Advanced System Diagnostics and Troubleshooting Guide

ExtremeWare Software Version 7.7
Contents

Preface
- Introduction ... 9
- Terminology .. 9
- Conventions ... 9
- Related Publications 10

Chapter 1 Introduction
- Introduction ... 11
- Diagnostics: A Brief Historical Perspective 12
- Overview of the ExtremeWare Diagnostics Suite ... 12
- Supported Hardware 13
- Applicable ExtremeWare Versions 13

Chapter 2 “i” Series Switch Hardware Architecture
- Diagnostics Support 15
 - The BlackDiamond Systems 16
 - BlackDiamond 6800 Series Hardware Architecture Differences 16
 - The BlackDiamond Backplane 17
 - BlackDiamond I/O Modules 18
 - Management Switch Modules 19
 - BlackDiamond MSM Redundancy 20
 - Causes of MSM Failover and System Behavior 20
 - Alpine Systems 22
 - Summit “i” Series Systems 23

Chapter 3 Packet Errors and Packet Error Detection
- Overview .. 25
Definition of Terms 26

Standard Ethernet Detection for Packet Errors on the Wire 27

Extreme Networks’ Complementary Detection of Packet Errors Between Wires 27
 Hardware System Detection Mechanisms 28
 Software System Detection Mechanisms 29

Failure Modes 30
 Transient Failures 30
 Systematic Failures 30
 Soft-State Failures 30
 Permanent Failures 31
 Responding to Reported Failures 31

Health Check Messages 33
 Alert Messages 33
 Checksum Error Messages: 34
 Corrective Behavior Messages 35

Chapter 4 Software Exception Handling 37

Overview of Software Exception Handling Features 37
 System Watchdog Behavior 37
 System Software Exception Recovery Behavior 38
 Redundant MSM Behavior 38

Configuring System Recovery Actions 40
 Related Commands 40
 Configuring System Recovery Actions on “i” Series Switches 40
 Configuring System Recovery Actions on “e” Series Switches 41
 Usage Notes 41

Configuring Reboot Loop Protection 43
 Related Commands 43
 Configuring Reboot Loop Protection 43

Dumping the “i” Series Switch System Memory 45
 Related Commands 45
 Configuring an Automatic System Dump During System Recovery 45
 Initiating a Manual System Dump 46
 Example Log for a Software Exception 47

Chapter 5 Diagnostics 49

Diagnostic Test Functionality 49
 How Diagnostic Tests are Run 49
 How the Test Affects the Switch 50

System Health Checks: A Diagnostics Suite 52
 Diagnostic Suite Components 52
 The Role of Memory Scanning and Memory Mapping 53
 Modes of Operation 54
Contents

Asia TAC 104
EMEA TAC 104
Japan TAC 104

What Information Should You Collect? 105
Analyzing Data 105
Diagnostic Troubleshooting 106
Extreme Networks’ Recommendations 107
Using Memory Scanning to Screen I/O Modules 109

Appendix A Limited Operation Mode and Minimal Operation Mode

Limited Operation Mode 111
 Triggering Limited Operation Mode 112
 Bringing a Switch Out of Limited Operation Mode 112

Minimal Operation Mode 112
 Triggering Minimal Operation Mode 112
 Bringing a Switch Out of Minimal Operation Mode 113

Appendix B Reference Documents

General Information 115
Other Documentation Resources 115

Index

Index of Commands
This Preface provides an overview of this guide, describes guide conventions, and lists other publications that might be useful.

Introduction

This guide describes how to use the ExtremeWare hardware diagnostics suite to test and validate the operating integrity of Extreme Networks switches. The tools in the diagnostic suite are used to detect, isolate, and treat faults in a system.

This guide is intended for use by network designers, planners, and operations staff.

Terminology

When features, functionality, or operation is specific to a modular or stand-alone switch family, the family name is used. Explanations about features and operations that are the same across all product families simply refer to the product as the “switch.”

Conventions

Table 1 and Table 2 list conventions that are used throughout this guide.

Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Notice Type</th>
<th>Alerts you to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>Notice Type</td>
<td>Important features or instructions.</td>
</tr>
<tr>
<td>![Icon]</td>
<td></td>
<td>Risk of personal injury, system damage, or loss of data.</td>
</tr>
<tr>
<td>![Icon]</td>
<td></td>
<td>Risk of severe personal injury.</td>
</tr>
</tbody>
</table>
Table 2: Text Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen displays</td>
<td>This typeface indicates command syntax, or represents information as it appears on the screen.</td>
</tr>
<tr>
<td>The words “enter”</td>
<td>When you see the word “enter” in this guide, you must type something, and then press the Return or Enter key. Do not press the Return or Enter key when an instruction simply says “type.”</td>
</tr>
<tr>
<td>and “type”</td>
<td></td>
</tr>
<tr>
<td>[Key] names</td>
<td>Key names are written with brackets, such as [Return] or [Esc].</td>
</tr>
<tr>
<td></td>
<td>If you must press two or more keys simultaneously, the key names are linked with a plus sign (+). Example:</td>
</tr>
<tr>
<td></td>
<td>Press [Ctrl]+[Alt]+[Del].</td>
</tr>
<tr>
<td>Letter in bold type</td>
<td>Letters within a command that appear in bold type indicate the keyboard shortcut for a command. When entering the command, you can use just the bolded letters instead of the entire word.</td>
</tr>
<tr>
<td>Words in italicized type</td>
<td>Italics emphasize a point or denote new terms at the place where they are defined in the text.</td>
</tr>
</tbody>
</table>

Related Publications

The publications related to this one are:

- ExtremeWare Software Command Reference, Software Version 7.7.
- ExtremeWare Error Message Decoder.

Documentation for Extreme Networks products is available on the World Wide Web at the following location:

http://www.extremenetworks.com/services/documentation/Default.asp
This guide describes how to use the ExtremeWare hardware diagnostics suite to test and validate the operating integrity of Extreme Networks switches. The tools in the diagnostic suite are used to detect, isolate, and treat faults in a system.

This chapter contains the following sections:

- **Diagnostics: A Brief Historical Perspective** on page 12
- **Overview of the ExtremeWare Diagnostics Suite** on page 12
- **Supported Hardware** on page 13
- **Applicable ExtremeWare Versions** on page 13

Introduction

The purpose of this guide is to provide information and guidelines to assist you in implementing the diagnostic suite within ExtremeWare. The Extreme Networks diagnostic software is intended to identify possible faulty hardware or software error conditions and—depending on how the various diagnostics features are configured—take the appropriate preconfigured action. The action might be to enable the switch to write informative error messages to the switch log, attempt to recover itself and continue operating, or simply remove the suspect system component from service.

It is important to note that while each diagnostic test—by itself—is not complicated, system configuration, as a whole, must be evaluated to ensure ongoing, expected behavior both with the switch and across the network itself. For example, in implementing the diagnostic suite, you must take into consideration these operational variables:

- Redundancy mechanisms implemented
- Levels of redundancy within the network
- Acceptable outage windows (scheduled and unscheduled)
Diagnostics: A Brief Historical Perspective

Diagnostic utility programs were created to aid in troubleshooting system problems by detecting and reporting faults so that operators or administrators could go fix the problem. While this approach does help, it has some key limitations:

- It is, at its base, reactive, meaning a failure must occur before the diagnostic test can be used to look for a cause for the failure.
- It can be time consuming, because the ability to troubleshoot a failure successfully based on the information provided by the diagnostics test depends greatly on the types of information reported by the test and the level of detail in the information.

Because users of mission-critical networks and network applications are becoming increasingly dependent on around-the-clock network access and highest performance levels, any downtime or service degradation is disruptive and costly. Time lost to an unexpected failure, compounded by more time lost while someone attempts to isolate and fix the failure, has become increasingly less acceptable.

The process of improving diagnostic tests to minimize failures and their impact is a kind of feedback system: What you learn through the use of the diagnostics improves your understanding of hardware failure modes; what you learn from an improved understanding of hardware failure modes improves your understanding of the diagnostics.

The goal of the current generation of ExtremeWare diagnostics is to help users achieve the highest levels of network availability and performance by providing a suite of diagnostic tests that moves away from a reactive stance—wherein a problem occurs and then you attempt to determine what caused the problem—to a proactive state—wherein the system hardware, software, and diagnostics work together to reduce the total number of failures and downtime through:

- More accurate reporting of errors (fewer false notifications; more information about actual errors)
- Early detection of conditions that lead to a failure (so that corrective action can be taken before the failure occurs)
- Automatic detection and correction of packet memory errors in the system’s control and data planes

Administrators will now find a greatly reduced MTTR (mean time to repair) due to fast and accurate fault identification. Multiple modules will no longer need to be removed and tested; faulty components will usually be identified directly. Over time, there should be a significant reduction in the number of problems found.

NOTE

In spite of the improved ExtremeWare hardware diagnostics, some network events might still occur, because software is incapable of detecting and preventing every kind of failure.

Overview of the ExtremeWare Diagnostics Suite

The ExtremeWare diagnostic suite includes the following types of tools for use in detecting, isolating, and treating faults in a switch. Each of these diagnostic types is summarized below, but is described in greater detail in later sections of this guide.

- Power-on self test (POST)—A sequence of hardware tests that run automatically each time the switch is booted, to validate basic system integrity. The POST runs in either of two modes: normal (more thorough, but longer-running test sequence) or FastPOST (faster-running basic test sequence).
• On-demand system hardware diagnostics—Run on demand through user CLI commands; runs in either of two modes: normal (faster-running basic test sequence) or extended (more thorough, but longer-running test sequence).

The extended diagnostics include the packet memory scan, which checks the packet memory area of the switch fabric for defects and maps out defective blocks. This test can be run by itself, as part of the slot-based extended diagnostics, or can be invoked from within the system health checks.

• Switch-wide communication-path packet error health checks—(Apply only to “i” series Summit, Alpine, and BlackDiamond switches.) An integrated diagnostic subsystem—the system health check feature—that consists of a number of different test types, operating proactively in the background to detect and respond to packet error problems in module memory or on communication paths.

The system health checks for “i” series switches include the following kinds of tests:

— Backplane health checks
— CPU health checks
— Switch fabric checksum validation
— Dynamic memory scanning and memory mapping
— Transceiver diagnostics
— Forwarding database (FDB) scan

NOTE

One component of the system health check feature is a bus monitoring and data integrity verification subsystem that monitors the operation of all data and control busses within the switch. This low-level subsystem—composed of software and hardware components—passes the results of its tests to another system health check subsystem, an intelligent layer that is responsible for interpreting the test results and reporting them to the user. Since the inception of the use of this intelligent interpretation and reporting layer in the system health check feature, the operation of this interpretation and reporting subsystem has undergone significant changes. At its current level of maturity, it represents an intelligent, integral component of the overall system health check system.

Supported Hardware

The ExtremeWare diagnostic suite applies only to Extreme Networks switch products based on the “inferno” series chipset. Equipment based on this chipset are referred to as being “inferno” series or “i” series products: the BlackDiamond family of core chassis switches (6804, 6808, and 6816), the Alpine systems (3802, 3804, 3808), and the Summit “i”-series stackables (Summit1i, Summit5i, Summit7i, Summit 48i, and Summit48Si).

A subset of the ExtremeWare diagnostic suite—runtime, slot-based diagnostics—applies only to Extreme Networks Summit “e” series switch products. The Summit “e” series switches include the following models: Summit 200-24, Summit 200-48, Summit 300-24, Summit 300-48, Summit 400-24p, Summit 400-24t, and Summit 400-48t.

Applicable ExtremeWare Versions

The information in this guide is based on the features and feature attributes found in ExtremeWare Version 7.4 or later.
This chapter provides a brief summary of the “i” series switch hardware features most relevant to understanding the use of the Extreme Networks diagnostic suite.

This chapter contains the following sections:

- Diagnostics Support on page 15
- The BlackDiamond Systems on page 16
- Alpine Systems on page 22
- Summit “i” Series Systems on page 23

Diagnostics Support

The ExtremeWare diagnostic suite applies only to Extreme Networks switch products based on the "inferno" series chipset. Equipment based on this chipset are referred to as being “inferno” series or “i” series products: the BlackDiamond family of core chassis switches (6804, 6808, and 6816), the Alpine systems (3802, 3804, 3808), and the Summit “i”-series stackables (Summit1i, Summit5i, Summit7i, Summit 48i, and Summit48Si).

NOTE

These switches and the switch modules use naming conventions ending with an “i” to identify them as “inferno” series or “i” series products. For the most current list of products supporting the “i” chipset, such as the MSM-3 and other “3”-series modules, such as the G16X³, consult your release notes.

Unless otherwise specified, a feature requiring the “i” chipset requires the use of both an “i” chipset-based management module, such as the MSM64i, and an “i” chipset-based I/O module, such as the G8Xi.
The BlackDiamond Systems

In the context of the advanced system diagnostics suite, the BlackDiamond family of core chassis switches share the same fundamental hardware architecture: a multislot modular chassis containing a passive backplane that supports redundant load-sharing, hot-swappable switch fabric modules. On BlackDiamond systems, each I/O module and MSM represents an individual switch containing its own switching fabric and packet memory.

Figure 1: BlackDiamond 6800 Series architecture, general block diagram

BlackDiamond 6800 Series Hardware Architecture Differences

In the context of understanding the ExtremeWare diagnostics and their use in troubleshooting system problems, these are the key hardware distinctions between the BlackDiamond 6816, 6808, and 6804.

- **BlackDiamond 6816**—Modular chassis with passive backplane; sixteen chassis slots for I/O modules; four chassis slots for MSMs.
- **BlackDiamond 6808**—Modular chassis with passive backplane; eight chassis slots for I/O modules; two chassis slots for MSMs.
- **BlackDiamond 6804**—Modular chassis with passive backplane; four chassis slots for I/O modules; two chassis slots for MSMs.
The BlackDiamond Backplane

The BlackDiamond backplane is a passive backplane, meaning that all the active components such as CPUs, ASICs, and memory have been moved onto plug-in modules, such as the I/O modules and MSMs.

Figure 2: BlackDiamond passive backplane architecture (BlackDiamond 6808 shown)

The BlackDiamond backplane provides inter-slot electrical connections for both network data traffic and a separate control bus for switch fabric management. Data traffic is carried on four AUI links between each MSM and each I/O slot on BlackDiamond 6804 and BlackDiamond 6808 systems, and on two AUI links between each MSM and each I/O slot on BlackDiamond 6816 systems. Device management occurs on a 32-bit PCI bus connecting MSMs and I/O modules. The number of backplane slots for I/O modules and MSMs determines the BlackDiamond system type (6804, 6808, 6816).

The chief advantages of a passive backplane are:

- The absence of active components yields a much lower possibility of backplane failure.
- You can remove and replace system modules faster, making upgrades and repairs easier, faster, and cheaper.

NOTE

One disadvantage of a passive backplane is that a problem on one switch module might cause other switch modules to fail. More information on this possibility is covered in later chapters of this guide.
BlackDiamond I/O Modules

Each BlackDiamond I/O module has a built-in switching fabric (see Figure 3) giving the module the capability to switch local traffic on the same module. Traffic that is destined for other modules in the chassis travels across the backplane to the MSMs, where it is switched and sent to its destination I/O module.

Figure 3: BlackDiamond I/O module architecture (G8Xi 32 Gb fabric shown)

Each BlackDiamond I/O module has eight load-shared Gigabit Ethernet links to both MSMs through the backplane. The load sharing algorithm distributes traffic across different channels through the backplane’s Gigabit Ethernet links, providing bi-directional communication.

Each BlackDiamond I/O module is equipped with the following kinds of hardware components:

- **PHY:** An industry-standard ASIC responsible for physical layer (layer 1) signal, clocking, etc.
- **MAC:** The MAC handles the standard MAC layer functions as well as some other functions to prepare a packet for transmission to the switch fabric or to the external network, including 802.1p and DiffServ examination, VLAN insertion, MAC substitution, TTL decrement, 802.1p and DiffServ replacement, etc.
- Each I/O module has both *external* MACs and *internal* MACs. External MACs handle the interface to the external ports; internal MACs handle the interface to the BlackDiamond backplane. Each MSM provides four Gigabit Ethernet links to each I/O module.
- **PBUS:** The packet data bus that transfers packets between the MAC and the packet memory.
- **Switch engine (distributed packet processor) ASIC (Twister) and its associated memories: packet RAM and FDB RAM.** The SE ASIC implements a high-speed, parallel data transfer bus for transferring packets from MACs to packet memory and back.
- **Address filtering and queue management ASIC (Quake) and its associated memories: OTP RAM, PQ RAM, and VPST RAM.**

When a data packet is received by the PHY, the PHY passes the packet to the MAC. The MAC handles the layer 2 tasks, such as tagging and the MAC address, then transfers the packet across the PBUS to the
packet memory for temporary storage. Based on the information in memory, such as the FDB, the address filtering and queue management ASIC makes a forwarding decision. If the next hop is a local port (on the same module), the packet is forwarded to the external MAC and PHY for the exit port. If the packet is destined for another module (as either slow path traffic or fast path traffic), the packet is transferred to the internal MAC and then on to the MSM (CPU).

All I/O modules share the management bus on the backplane, and use it to communicate to each other and to the MSMs.

Management Switch Modules

As its name indicates, the Management Switch Fabric Module (MSM) serves a dual role in the system: it is equipped to act as the internal switch fabric for data that is being transferred between I/O modules in the chassis, and to handle the upper-layer processing and system management functions for the switch. (See Figure 4.)

Figure 4: BlackDiamond MSM architecture (MSM64i shown)

An MSM is equipped with the following hardware components: CPU subsystem (dual CPUs, DRAM, NVRAM, flash memory, and PCMCIA slot) and switch fabric subsystem (Quake ASICs, OTP, PQ, and VPST RAM, packet memory and FDB SRAM, Twister ASICs, PBUS, and MAC ASICs).
BlackDiamond MSM Redundancy

The CPU subsystems on a pair of BlackDiamond MSMs operate in a master-slave relationship. (See Figure 5.)

Figure 5: BlackDiamond MSM redundancy scheme

The master MSM CPU subsystem actively manages the switch and the task of switching packets in the CPU control (or management) path. The slave MSM CPU subsystem is in standby mode, but is checked periodically by the master MSM CPU (via EDP) to determine whether it is still available.

The master MSM also guarantees that management operations occur in a synchronized manner. For example, if you make a configuration change and need to save it, the master MSM ensures that the configuration is saved to both the master MSM and the slave MSM at the same time. That way, the updated slave is ready to take over as the master if the master MSM fails.

Despite the master-slave switch management role, the switch fabrics on both MSMs actively switch core traffic in a load-shared fashion. Load-sharing switches core traffic from different I/O modules.

All MSMs share the control (or management) bus on the backplane, and use it to communicate to each other and to installed I/O modules to perform system health checks and status polling.

Causes of MSM Failover and System Behavior

A number of events can cause an MSM failover to occur, including:

- Software exception; system watchdog timer expiry
- Diagnostic failure (extended diagnostics, transceiver check/scan, FDB scan failure/remap)
- Hot removal of the master MSM or hard-reset of the master MSM
The MSM failover behavior depends on the following factors:

- Platform type and equippage (Summit vs. Alpine vs. BlackDiamond)
- Software configuration settings for the software exception handling options such as system watchdog, system recovery level, and reboot loop protection. (For more information on the configuration settings, see Chapter 4, “Software Exception Handling.”)

In normal operation, the master MSM continuously resets the watchdog timer. If the watchdog timer expires, the slave MSM will either 1) reboot the chassis and take over as the master MSM (when the switch is equipped with MSM-64i modules), or 2) initiate a hitless failover (when the switch is equipped with MSM-3 modules). The watchdog is a software watchdog timer that can be enabled or disabled through CLI commands. The watchdog timer is reset as long as ExtremeWare is functioning well enough to return to the main software exception handling loop where the critical software exception handling tasks, such as tBGTask, handle the process of resetting the watchdog timer and creating log entries.

- Software configuration settings for the system health check feature, or for any of the diagnostic tests that you might choose to run manually.

For example, in the context of memory scanning and mapping, Chapter 5, “Diagnostics,” contains three tables that describe the behavior of the switch for different platform types and diagnostics configuration:

- Table 6: Auto-recovery memory scanning and memory mapping behavior
- Table 7: Manual diagnostics memory scanning and memory mapping behavior, normal
- Table 8: Manual diagnostics memory scanning and memory mapping behavior, extended

NOTE

On switches equipped with MSM64i modules, you should periodically use the synchronize command to ensure that the slave MSM and master MSM are using matched images and configurations. If not synchronized, the slave MSM might attempt to use the image it has loaded in conjunction with the configuration from the master MSM, a mismatch that will most likely cause the switch to behave differently after an MSM failover, thereby defeating the intended purpose of redundant peer MSMs.

If you need to insert a new MSM, you can duplicate the contents of the NVRAM and flash memory from an existing MSM to the newly-installed MSM using one CLI synchronization command.

NOTE

The MSM-3 uses technology that provides “hitless” failover, meaning the MSM-3 transitions through a failover with no traffic loss and no switch downtime, while it maintains active links and preserves layer 2 state tables. Contrast this performance to normal failover with MSM64i modules, which can take the switch down for approximately 30 seconds. The MSM-3 makes hitless upgrades possible. It is supported in ExtremeWare release 7.1.1 and later.
Alpine Systems

Like the BlackDiamond systems, the Alpine systems are also based on a multislot modular chassis that uses the inferno chipset, but the Alpine switches differ from the BlackDiamond switches on these points (see Figure 6):

- **Active backplane**—Alpine switches use an active backplane that uses the same basic set of ASICs (the switch engine ASIC and the address filtering and queue management ASIC) and memory (packet memory for storing packets; OTP RAM, PQ RAM, and VPST RAM) that are used on the BlackDiamond MSMs and I/O modules, so it offers wire-speed switching.

 But unlike the BlackDiamond MSM, the Alpine backplane has no CPU and no MAC. It does provide PBUS links to all I/O modules. The number of backplane slots for I/O modules determines the Alpine system type (3802, 3804, 3808).

- **SMMi processor module instead on MSM**—The SMMi processor module is similar to the CPU subsystem of the BlackDiamond MSM in that it is equipped with the following hardware components: CPU subsystem, DRAM, NVRAM, and flash memory, console port connectors, management interface, and a PCMCIA slot. But unlike the MSM, the SMMi contains no switching fabric.

- **I/O modules provide PHY and MAC functionality, but no onboard switching fabric**—Each standard I/O module has two PBUS links to the switching fabric on the Alpine backplane.

Figure 6: Alpine architecture (Alpine 3804 shown)
Summit “i” Series Systems

Unlike the BlackDiamond and Alpine systems, the Summit “i” series stackables are not modular systems: all of the system components are integrated into one unit. (See Figure 7.)

Figure 7: Summit “i” series architecture

The Summit CPU subsystem is similar to the CPU subsystem of the BlackDiamond MSM and the Alpine SMMi in that it is equipped with the same basic hardware components: dual CPUs, memory (DRAM, NVRAM, and flash memory), console port connectors, management interface, and a PCMCIA slot.

The Summit switching fabric subsystem uses the same basic set of ASICs (the switch engine ASIC and the address filtering and queue management ASIC) and memory (packet memory for storing packets; OTP RAM, PQ RAM, and VPST RAM) that are used on the BlackDiamond and Alpine switches, so it, too, offers wire-speed switching.

The Summit I/O subsystem provides PHY and MAC functionality in a variety of port configurations (types of ports and numbers of ports).
This chapter describes some of the factors that might result in packet errors in the switch fabric and the kinds of protection mechanisms that are applied to ensure that packet error events are minimized and handled appropriately.

This chapter contains the following sections:

- Overview on page 25
- Definition of Terms on page 26
- Standard Ethernet Detection for Packet Errors on the Wire on page 27
- Extreme Networks' Complementary Detection of Packet Errors Between Wires on page 27
- Failure Modes on page 30
- Health Check Messages on page 33

Overview

Complex, wire-speed switch fabrics are subject to electronic anomalies that might result in packet errors. The Ethernet standard contains built-in protections to detect packet errors on the link between devices, but these mechanisms cannot always detect packet errors occurring in the switch fabric of a device. Extreme Networks has incorporated many protection mechanisms to ensure that packet error events are minimized and handled properly.

These protection mechanisms include the following:

- Ethernet CRC (detects packet errors between switches)
- Switch fabric checksums (automatic detection of live packet errors)
- Packet memory scanning (offline detection of packet memory errors)
- System health check (automatic test of various CPU and data paths)
- FDB scan (background scan process scans entire FDB RAM pool on all switch fabrics)
- Transceiver check (background detects packet errors on internal control paths)
Definition of Terms

To establish a basis for the descriptions in this chapter, Table 3 lists and defines terms that are used repeatedly throughout this chapter and those that follow. When any of these terms are used for their precise meaning, they are shown emphasized in bold type.

Table 3: Data Error Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet error event</td>
<td>When the contents of a network data or control packet are modified by the transmission medium or a network device in a way that is not indicated by the rules of standard network behavior such that the contents of the packet will be considered invalid by upper layer protocols or applications, we say that a packet error event has occurred.</td>
</tr>
<tr>
<td>Checksum</td>
<td>A value computed by running actual packet data through a polynomial formula. Checksums are one of the tools used by Extreme Networks in attempts to detect and manage packet error events.</td>
</tr>
<tr>
<td>Packet checksum</td>
<td>A checksum value that is computed by the MAC chip when the packet is transferred from the MAC chip to the switch fabric. This checksum value precedes the packet as it transits the switch fabric.</td>
</tr>
<tr>
<td>Verification checksum</td>
<td>A checksum value that is computed by the MAC chip when the packet is transferred from the switch fabric to the MAC chip for transmission.</td>
</tr>
<tr>
<td>Checksum error</td>
<td>When a packet exits the switch fabric, the packet checksum that follows the packet must match the verification checksum computed as the packet leaves the switch fabric. If the checksums do not match, then a checksum error results.</td>
</tr>
<tr>
<td>System health check</td>
<td>A series of system tests and associated reporting mechanisms that are used to notify network operators of potential system problems and to isolate and diagnose faulty components when problems occur. The checksum error reporting mechanism is a part of the system health check system.</td>
</tr>
<tr>
<td>System health check error</td>
<td>This term refers to error messages in the system log that are generated by the system health check system. Error messages generated by the system health check system are prefaced by the text string “Sys-health-check.” Checksum error messages are a subset of the system health check error messages.</td>
</tr>
<tr>
<td>Transient errors</td>
<td>Errors that occur as one-time events during normal system processing. These types of errors will occur as single events, or might recur for short durations, but do not have a noticeable impact on network functionality and require no user intervention to correct.</td>
</tr>
<tr>
<td>Soft-state errors</td>
<td>These types of error events are characterized by a prolonged period of reported error messages and might, or might not, be accompanied by noticeable degradation of network service. These events require user intervention to correct, but are resolved without replacing hardware.</td>
</tr>
<tr>
<td>Permanent errors</td>
<td>These types of errors result from permanent hardware defects that might, or might not, affect normal switch operation. They cannot be resolved by user intervention and will not resolve themselves. You must replace hardware to resolve permanent errors.</td>
</tr>
</tbody>
</table>
Data transiting from one switch to another is checked for packet errors using the Ethernet Cyclic Redundancy Check (CRC) built into the IEEE 802.3 specification. As the sending switch assembles a frame, it performs a CRC calculation on the bits in that frame and stores the results of that calculation in the frame check sequence field of the frame. At the receiving end, the switch performs an identical CRC calculation and compares the result to the value stored in the frame check sequence field of the frame. If the two values do not match, the receiving switch assumes that packet data has been illegally modified between CRC calculation and CRC validation and discards the packet, and increments the CRC error counter in the MAC device associated with that port. In Extreme Networks devices, ExtremeWare polls the MAC CRC error count registers and makes that information available through the output of the `show port rxerrors` CLI command.

Table 3: Data Error Terms (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast path</td>
<td>This term refers to the data path for a packet that traverses a switch and does not require processing by the CPU. Fast path packets are handled entirely by ASICs and are forwarded at wire rate.</td>
</tr>
<tr>
<td>Slow path</td>
<td>This term refers to the data path for packets that must be processed by the switch CPU, whether they are generated by the CPU, removed from the network by the CPU, or simply forwarded by the CPU.</td>
</tr>
</tbody>
</table>

Standard Ethernet Detection for Packet Errors on the Wire

Data transiting from one switch to another is checked for packet errors using the Ethernet Cyclic Redundancy Check (CRC) built into the IEEE 802.3 specification.

As the sending switch assembles a frame, it performs a CRC calculation on the bits in that frame and stores the results of that calculation in the frame check sequence field of the frame. At the receiving end, the switch performs an identical CRC calculation and compares the result to the value stored in the frame check sequence field of the frame. If the two values do not match, the receiving switch assumes that packet data has been illegally modified between CRC calculation and CRC validation and discards the packet, and increments the CRC error counter in the MAC device associated with that port. In Extreme Networks devices, ExtremeWare polls the MAC CRC error count registers and makes that information available through the output of the `show port rxerrors` CLI command.

Extreme Networks’ Complementary Detection of Packet Errors Between Wires

The 802.3 Ethernet specification provides a CRC check for validation of data on the wire, but offers no guidance for handling data validation in the devices between the wires. Because these devices are far more complicated than the wires connected to them, common sense indicates the requirement for some mechanism for checking internal data integrity. To complement the Ethernet CRC data validation scheme, Extreme Networks switches implement an internal data checksum validation scheme referred to as the fabric checksum.

The switch fabric in a switch is essentially an extremely high-speed data path connecting multiple ports and using a set of programmable lookup tables to make intelligent forwarding decisions when moving data from point to point inside the switch. Figure 8 uses a generalized block diagram of a switch to illustrate data movement within a switch.
Figure 8: Generalized switch block diagram

The following sections describe the hardware and software components that work together to detect and manage packet error incidents within the Extreme Networks switch.

Hardware System Detection Mechanisms

All Extreme Networks switches based on the “i”-series switch fabric validate data integrity internal to the switch fabric using a common checksum verification algorithm. Using Figure 8 as a generalized model, when a packet is received at an Ethernet network interface, the receiving MAC ASIC verifies the Ethernet CRC: it computes a CRC value by applying the same algorithm used to compute the CRC value appended to the received packet data by the transmitting switch. If the algorithm and the data it is applied to are the same on both ends of the Ethernet link, the CRC values should match. If they do not, the packet is assumed to have been damaged and is discarded.

If the CRC values match, the MAC ASIC must then transfer the packet to the internal switch fabric. Before doing this, however, it produces a checksum value based on the packet data being passed to the switch fabric. This checksum value becomes the packet checksum. It is prepended to the packet and both the packet checksum and packet are passed on to the switch fabric.

After the switch fabric is finished processing the packet and has made a decision regarding where the packet is to be forwarded, it passes the packet to the transmitting MAC ASIC. The transmitting MAC ASIC performs the reverse of the process performed by the receiving MAC ASIC. It first computes a checksum value based on the packet data received from the switch fabric. We will call this value the verification checksum.

The transmitting MAC ASIC then compares the verification checksum against the packet checksum. If the two values do not match, the result is a checksum error. The MAC ASIC maintains a count of every checksum error that occurs on every port. When a packet is found to have a checksum error, it is still
transmitted, but an invalid CRC value is included with the packet. Therefore, the receiving device will
detect an invalid CRC value and will drop the packet.

In Summit “i” series stackable switches, the packet checksum is calculated by the MAC ASIC on the
receiving port and is compared against the verification checksum calculated by the MAC ASIC on the
transmitting port, as described above.

In Alpine 3800 series switches, the packet checksum is calculated by the MAC ASIC on the receiving
port on the I/O module on which the packet is received. The packet checksum and packet are passed to
the switch fabric, which is on the Alpine switch backplane, and then from the switch fabric to the
transmitting MAC ASIC on the I/O module on which the packet is to be transmitted. There, the
verification checksum is computed and compared against the packet checksum.

In BlackDiamond 6800 series switches, the packet checksum is computed by the MAC ASIC on the
receiving port on the I/O module on which the packet is received. The packet checksum and packet
traverse the switch fabric on the I/O module and are handed off to either an external MAC ASIC,
connected to a network port, or to an internal MAC ASIC, connected to a BlackDiamond backplane link.

In either case, the behavior of the MAC ASIC is the same: it computes the verification checksum and
compares it against the packet checksum to detect any changes in packet data. Similarly, whether the
packet is transmitted out the external port to the network, or out the internal port to the BlackDiamond
backplane, the packet is accompanied by an Ethernet CRC.

The behavior of the BlackDiamond MSM module is identical to that of the BlackDiamond I/O module,
except that all MAC ASICs on the MSM are internal (not to network ports). Regardless, the behavior of
the receiving and transmitting MAC ASICs is the same for packets traversing an MSM module as for
packets traversing an I/O module.

Thus far, all of the systems described have been involved in fast-path forwarding. Therefore, any
checksum errors detected using the mechanisms described above are referred to as fast-path checksum
errors.

Packets that must be processed by the switch CPU are also validated by checksum values. When a
packet is received, it might be destined specifically for the CPU (as in the case of protocol packets) or it
might be passed to the CPU for assistance in making a forwarding decision (if the switch fabric lacks
the information required to forward the packet correctly). In either case, the receiving MAC ASIC still
computes and prepends a packet checksum just as it does for fast-path packets, but because the packet
is not passed to a transmitting MAC ASIC before it is forwarded, the switch fabric itself is responsible
for computing the verification checksum and comparing it against the packet checksum. If a mismatch
is found, the switch fabric reports the checksum error condition to the CPU as it passes the packet up to
the CPU. These types of checksum errors are one instance of a class of checksum errors known as
slow-path checksum errors.

Software System Detection Mechanisms

As described above, each MAC ASIC maintains a port-by-port count of every checksum error detected.
ExtremeWare contains mechanisms that can retrieve the checksum error counts from the MAC ASICs in
the switch and act on it. Current versions of ExtremeWare retrieve the checksum error counts from all
MAC ASICs in the switch at twenty-second intervals. The counts at the end of the twenty-second
interval are compared with the counts at the beginning of the twenty-second interval on a port-by-port
basis. If, for any given port, the count is found to be different, then ExtremeWare is said to have
detected a checksum error.

Depending on the ExtremeWare version, the configuration settings, the frequency and count of
checksum errors, and a variety of other factors, ExtremeWare will initiate one of several actions,
described in the section “System (CPU and Backplane) Health Check” on page 70. For example, the system health check facility can be configured such that ExtremeWare will insert a message into the system log that a checksum error has been detected.

Failure Modes

Although packet errors are extremely rare events, packet errors can occur anywhere along the data path, along the control path, or while stored in packet memory. A checksum mismatch might occur due to a fault occurring in any of the components between the ingress and egress points—including, but not limited to, the packet memory (SRAM), ASICs, MAC, or bus transceiver components.

There are many causes and conditions that can lead to packet error events. These causes and conditions can fall into one of these categories:

- Transient errors
- Systematic errors
 - Soft-state errors
 - Permanent errors

The failure modes that can result in the above categories are described in the sections that follow.

Transient Failures

Transient failures are errors that occur as one-time events during normal system processing. These types of errors will occur as single events, or might recur for short durations. Because these transient events usually occur randomly throughout the network, there is usually no single locus of packet errors. They are temporary (do not persist), do not have a noticeable impact on network functionality, and require no user intervention to correct: There is no need to swap a hardware module or other equipment.

Systematic Failures

Systematic errors are repeatable events: some hardware device or component is malfunctioning in such a way that it persistently exhibits incorrect behavior. In the context of the ExtremeWare Advanced System Diagnostics, the appearance of a checksum error message in the system log—for example—indicates that the normal error detection mechanisms in the switch have detected that the data in a packet has been modified inappropriately. While checksums provide a strong check of data integrity, they must be qualified according to their risk to the system and by what you can do to resolve the problem.

Systematic errors can be subdivided into two subgroups:

- Soft-state failures
- Permanent, or hard failures

Soft-State Failures

These types of error events are characterized by a prolonged period of reported error messages and might, or might not, be accompanied by noticeable degradation of network service. These events require user intervention to correct, but are resolved without replacing hardware.
Failures of this type are the result of software or hardware systems entering an abnormal operating state in which normal switch operation might, or might not, be impaired.

Permanent Failures

The most detrimental set of conditions that result in packet error events are those that result in **permanent errors**. These types of errors arise from some failure within the switch fabric that causes data to be corrupted in a systematic fashion. These permanent hardware defects might, or might not, affect normal switch operation. They cannot be resolved by user intervention and will not resolve themselves. You must replace hardware to resolve permanent errors.

Responding to Reported Failures

Before ExtremeWare 7.1, the fabric checksum validation mechanisms in ExtremeWare detected and reported all checksum validation failures, so the resulting mix of message types reported in the system log could cause confusion as to the true nature of the failure and the appropriate response. The confusion over the error reporting scheme often led to unnecessary diversion of resources and often unnecessary service interruptions because operators attempted to respond to reported errors that presented no actual threat to network operation.

In ExtremeWare 7.1, the responsibility for reporting checksum errors shifted from the low-level bus monitoring and data integrity verification subsystem that monitors the operation of all data and control busses within the switch to the higher-level intelligent layer that is responsible for interpreting the test results and reporting them to the user. Rather than simply insert every checksum validation error in the system log, the higher-level interpreting and reporting subsystem monitors checksum validation failures and inserts error messages in the system log when it is likely that a systematic hardware problem is the cause for the checksum validation failures.

NOTE

The intent of the higher-level interpreting and reporting subsystem is to remove the burden of interpreting and classifying of messages from the operator. The subsystem automatically differentiates between harmless checksum error instances and service-impacting checksum error instances.

The interpreting and reporting subsystem uses measurement periods that are divided into a sequence of 20-second windows. Within the period of a window, reports from the low-level bus monitoring subsystem are collected and stored in an internal data structure for the window. These reports are divided into two major categories: slow-path reports and fast-path reports.

- **Slow-path reports** come from monitoring control busses and the CPU-to-switch fabric interface. The slow-path reporting category is subdivided into different report message subcategories depending on whether they come from CPU data monitoring, CPU health check tests, or backplane health check tests.
- **Fast-path reports** come from direct monitoring of the switch fabric data path. The fast-path reporting category is subdivided into different report message subcategories, depending on whether they come from monitoring either internal or external MAC counters associated with each switch fabric in the switching system.
The slow-path and fast-path categories each have a separate configured threshold and associated action that occurs at the end of the 20-second window:

- For the slow-path category, the three types of slow-path subcategory reports are tallied and compared to the configured slow-path subcategory threshold.
- For the fast-path category, the two types of fast-path subcategory reports are tallied and compared to the configured fast-path subcategory threshold.

If either of these thresholds is exceeded, that window is marked as a “bad” window. For each bad window, the interpreting and reporting subsystem inserts a Sys-health-check error message into the system log, indicating the primary reason why the window was marked bad.

The interpreting and reporting subsystem also maintains a running history of the windows it processes. After it completes the window processing cycle, the interpreting and reporting subsystem examines the window history list and counts the number of bad windows in the list. The bad window count is compared to a configured window error parameter value. If the bad window count equals or exceeds the window error parameter value, the interpreting and reporting subsystem alerts the system health check system that there is a potential service-affecting condition. The system health check system will then take the action specified in the `configure sys-health-check` command (for more information, see “Health Check Functionality” on page 71):

- Insert an error message into the system log
- Send an SNMP trap to the configured trap receivers
- Take an offending module offline
- Take the entire switch offline
- Attempt to perform an automated recovery through the use of the packet memory scanning and mapping capability

NOTE

The default system health check action is to insert an error message into the system log, but in many environments, it is advisable to configure the system health check to send a trap to configured trap receivers to provide faster notification of potentially service affecting conditions.

The interpreting and reporting subsystem is enabled by default, and the default values for the slow- and fast-path thresholds and bad window counters depend on the switch platform type (see Table 4).

<table>
<thead>
<tr>
<th></th>
<th>Summit “f”</th>
<th>Alpine</th>
<th>BlackDiamond</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Slow-path threshold</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Window history</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Window errors</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
The following examples describe how these values apply to a BlackDiamond 6808:

- On a BlackDiamond 6808, if more than six fast-path errors are detected within one 20-second window, a message is inserted into the system log. If this pattern recurs three times within three windows, the system health check subsystem takes the action specified in the `configure sys-health-check` command.

- If fewer than six fast-path errors are detected within a single 20-second window, there is no threshold violation, so no message is inserted in the system log.

- If more than six fast-path errors are detected within a single 20-second window, but no fast-path errors are detected in other 20-second windows, an error message is inserted in the system log for the fast-path window threshold violation, but no system health check action is taken.

NOTE

The state of the interpreting and reporting subsystem is configurable (enabled/disabled), as are the values associated with the slow- and fast-path thresholds and bad window counters. However, these attributes are currently accessible only under the instruction from Extreme Networks TAC personnel. The default settings for these attributes have been found to work effectively under a broad range of networking conditions and should not require changes.

Health Check Messages

As stated earlier, ExtremeWare maintains five types of system health check error counters, divided into two categories: three slow path counters and two fast path counters.

- **Slow path counters:**
 - CPU packet error—Data (control or learning) packet processed by the CPU and found to be corrupted (a passive health check).
 - CPU diagnostics error—CPU health check (an active health check)
 - Backplane diagnostics error—EDP diagnostics packets (an active health check)

- **Fast path counters:**
 - Internal MAC checksum errors
 - External MAC checksum errors

Each of these system health check counters has an associated system log message type, to help focus attention during troubleshooting. These message types are reported in the system log according to the level of threat to the system. The message levels are:

- Alert messages
- Corrective action messages

Alert Messages

These errors are inserted into the system log when the configured default error threshold is exceeded within a given 20-second sampling window. When a threshold is exceeded, that window is marked as a “bad” window and the interpreting and reporting subsystem inserts an error message into the system log indicating the primary reason why the window was marked bad.
The intent of these messages is to alert the NOC that the health check error threshold is being exceeded. Closer monitoring is required, but these errors do not necessarily point to a systematic problem.

These messages take the general format:

date time <level:from> Sys-health-check type checksum error cat data

Example:

<CRIT:SYST> Sys-health-check [EXT] checksum error (fast path)
on slot 2, prev=73 cur=82

where:

- The severity level, either CRIT or WARN.
 - CRIT indicates a critical failure in the system that requires corrective action.
 - WARN indicates that the error is most likely an isolated checksum occurrence and should not be considered a critical failure to the system.

- The source of the message, from either SYST (system) or KERN (kernel).

- The type of test packet involved, possibly pointing to the packet origin and the diagnostic subsystem involved. Supported packet type descriptors are: CPU, DIAG, EDP, EXT, and INT.
 - CPU, DIAG, and EDP refer to packets generated within the CPU health-checking subsystem on the control (slow) path of the switch.
 - CPU packet types include DIAG and EDP packets, as well as data packets destined for the CPU.
 - DIAG packet types refer to the CPU diagnostics packets generated by the health-checking subsystem.
 - EDP packet types refer to the backplane health-checks used to test the communication paths between the CPU and the I/O blades.
 - EXT and INT packet types refer to a checksum that is appended to each and every packet that enters (ingresses) and exits (egresses) the switch fabric MACs on the data (fast) path. EXT refers to an external fabric checksum (external, user-facing MAC); INT refers to an internal fabric checksum (internal, backplane-facing MAC).
 (Extreme "i" series switches pro-actively scan for fault conditions throughout the switch architecture, and these packet types are all part of this effort. A checksum on one of these packet types could have its root in packet memory, because all of these test packet types are stored for a time in the packet memory. If the failure is within the packet memory and is repeatable, run the packet memory scan to isolate and correct the failure.)

- The category—slow path counters vs. fast path counters—associated with the health check error. This parameter indicates whether the window was marked bad due to fast-path reports or slow-path reports.

- Additional error information that summarizes the failure; content differs depending on the associated type.

Checksum Error Messages:

This message appears in the log when packets received by the CPU are corrupted:

<Crit:KERN> Sys-health-check [CPU] checksum error (slow-path) on slot 7 701026-00-03 0003Y-00052

This message appears in the log when CPU Diagnostic packets received by the CPU are corrupted:

<Crit:SYST> Sys-health-check [DIAG] First 16 bytes of unknown pkt (slow-path) on slot 7 701026-00-03 0003Y-00052
These messages appear in the log when EDP packets received are corrupted:

- `<Crit:SYST> Sys-health-check [EDP] checksum error (slow-path) on M-BRD, port 0x03 701026-00-03 0003Y-00052 — (Summit)`
- `<Crit:SYST> Sys-health-check [EDP] checksum error (slow-path) on BPLNE, port 0x03 701026-00-03 0003Y-00052 — (Alpine)`
- `<Crit:SYST> Sys-health-check [EDP] checksum error (slow-path) on MSM-A, port 0x03 701026-00-03 0003Y-00052 — (BlackDiamond)`

These messages appear in the log when the hardware detects checksum errors in the fast path and updates the corresponding registers:

- `<Crit:KERN> Sys-health-check [EXT] checksum error (fast-path) on slot 4 prev=0 cur=100 701033-00-02 0047B-00008`
- `<Crit:KERN> Sys-health-check [INT] checksum error (fast-path) on slot 5 prev=0 cur=100 701033-00-02 0087E-00009`

Corrective Behavior Messages

These error messages are inserted into the system log when the decision parameters (described earlier in "Responding to Reported Failures" on page 31) used by the interpreting and reporting subsystem are exceeded. These messages indicate that the system health check has taken the configured response action (log, send traps, card down, system down, or auto recovery) upon detecting a systematic error and take the general format:

`date time <level:from> Sys-health-check [ACTION] problem-type error`

Example:

- `<CRIT:SYST> Sys-health-check [ACTION] (PBUS checksum) (CARD_HWFAIL_PBUS_CHKSUM_CPU_PKT_ERROR) slot 2`

where:

- **problem-type** The type of problem detected, based on the health check diagnostic component that triggered the action, from among the following:
 - CPU diag packet—Action was taken because an excessive number of CPU health check packets were missed. Examine the CPU health check diagnostics. Errors on more than one slot probably indicate MSM management bus transceiver issues. Errors on single slots probably indicate that the specified slot is in error.
 - Backplane diag packet—Action was taken because an excessive number of backplane health check packets were missed.
 - Hardware failure—Indicates a card diagnostic failure during:
 - System boot
 - Card initialization
 - Manual diagnostics
 - Transceiver test
 - PBUS checksum—Fabric checksum error detected for:
 - Data traffic, [INT] or [EXT]
 - CPU-bound traffic [CPU]
 - EDP packets [EDP]
Packet Errors and Packet Error Detection

- Backplane link—Indicates that health check packets were lost on one or more backplane links connecting an MSM module to an I/O module. Either module might be in error; check the transceiver diagnostics.
- FDB error—Indicates that a discrepancy was detected during the FDB scan of the RAM memory pool.

The PBUS checksum type might indicate a problem with the packet memory, but it might also point to other problem types, indicating failures with other hardware components detected during additional checking performed under the umbrella of the Extreme diagnostics suite. For example, any other component in the path between the ingress and egress points could malfunction, resulting in a corrupted checksum. You should be aware that PBUS checksum messages and conditions can be caused by a packet memory failure, but that there are other possibilities as well. The packet memory scan should always be used in conjunction with the extended diagnostics to check the integrity of all the components.

Possible error conditions for PBUS action messages:

- CARD_HWFAIL_PBUS_CHKSUM_INT_ERROR
- CARD_HWFAIL_PBUS_CHKSUM_EXT_ERROR
- CARD_HWFAIL_PBUS_CHKSUM_EDP_ERROR
- CARD_HWFAIL_PBUS_CHKSUM_CPU_PKT_ERROR
- CARD_HWFAIL_PBUS_CHKSUM_CPU_PKT_DIAG_ERROR

error

The error condition that summarizes the failure. One of many values that points to a specific hardware component or software test (for further problem isolation).
This chapter describes the software exception handling features built into Extreme hardware and software products to detect and respond to problems to maximize switch reliability and availability.

This chapter contains the following sections:

- Overview of Software Exception Handling Features on page 37
- Configuring System Recovery Actions on page 40
- Configuring Reboot Loop Protection on page 43
- Dumping the “i” Series Switch System Memory on page 45

Overview of Software Exception Handling Features

In the context of using the Extreme Advanced System Diagnostics—either manually or automatically, there are several things you must keep in mind that can affect the operation of the diagnostics and/or the reliable operation of the switch itself:

- System watchdog behavior
- System software exception recovery behavior (configuration options)
- Redundant MSM behavior (and failover, in BlackDiamond systems)

System Watchdog Behavior

The system watchdog is a system self-reliancy diagnostic mechanism to monitor the CPU and ensure that it does not become trapped in a processing loop.

In normal operation, the system’s normal task processing periodically resets the watchdog timer and restarts it, maintaining uninterrupted system operation. But if the watchdog timer expires before the normal task processing restarts it, the system is presumed to be malfunctioning and the watchdog expiry triggers a reboot of the master MSM.

Depending on the persistence of an error and the system recovery actions configured in the `configure sys-recovery-level` command (reboot, shutdown, system dump, or—in the case of BlackDiamond systems equipped with redundant MSMs—MSM failover), the reboot might cause the system to perform the configured system recovery actions.
The system-watchdog feature is enabled by default. The CLI commands related to system-watchdog operation are:

```
enable system-watchdog
disable system-watchdog
```

NOTE

During the reboot cycle, network redundancy protocols will work to recover the network. The impact on the network depends on the network topology and configuration (for example, OSPF ECMP versus a large STP network on a single domain).

Also, if the system-watchdog feature is not enabled, error conditions might lead to extensive service outages. All routing and redundancy protocols use the CPU to calculate proper states. Using the OSPF ECMP and STP networks as general examples, if the CPU becomes trapped in a loop, the system in an OSPF network would be unable to process OSPF control messages properly, causing corruption in routing tables, while in an STP network, spanning tree BPDUs would not be processed, causing all paths to be forwarded, leading to broadcast storms, causing not only data loss, but loss of general connectivity as well.

System Software Exception Recovery Behavior

ExtremeWare provides commands to configure system recovery behavior when a software exception occurs.

- **Recovery behavior**—`configure sys-recovery-level` command
- **Reboot behavior**—`configure reboot-loop-protection` command
- **System dump behavior**—`configure system-dump server` command, `configure system-dump timeout` command, and `upload system-dump` command

These commands and their uses are described in these sections:

- “Configuring System Recovery Actions” on page 40
- “Configuring Reboot Loop Protection” on page 43
- “Dumping the “i” Series Switch System Memory” on page 45

Redundant MSM Behavior

A number of events can cause an MSM failover to occur, including:

- Software exception; system watchdog timer expiry
- Diagnostic failure (extended diagnostics, transceiver check/scan, FDB scan failure/remap)
- Hot removal of the master MSM or hard-reset of the master MSM

The MSM failover behavior depends on the following factors:

- Platform type and equipage
- Software configuration settings for the software exception handling options such as system watchdog, system recovery level, and reboot loop protection. (For more information on the configuration settings, see Chapter 4, “Software Exception Handling.”)

In normal operation, the master MSM continuously resets the watchdog timer. If the watchdog timer expires, the slave MSM will either 1) reboot the chassis and take over as the master MSM (when the
switch is equipped with MSM-64i modules), or 2) initiate a hitless failover (when the switch is equipped with MSM-3 modules). The watchdog is a software watchdog timer that can be enabled or disabled through CLI commands. The watchdog timer is reset as long as ExtremeWare is functioning well enough to return to the main software exception handling loop where the critical software exception handling tasks, such as tBGTask, handle the process of resetting the watchdog timer and creating log entries.

- Software configuration settings for the system health check feature, or for any of the diagnostic tests that you might choose to run manually.

For example, in the context of memory scanning and mapping, Chapter 5, “Diagnostics,” contains three tables that describe the behavior of the switch for different platform types and diagnostics configuration:

- Table 6: Auto-recovery memory scanning and memory mapping behavior
- Table 7: Manual diagnostics memory scanning and memory mapping behavior, normal
- Table 8: Manual diagnostics memory scanning and memory mapping behavior, extended

NOTE

On switches equipped with MSM64i modules, you should periodically use the synchronize command to ensure that the slave MSM and master MSM are using matched images and configurations. If not synchronized, the slave MSM might attempt to use the image it has loaded in conjunction with the configuration from the master MSM, a mismatch that will most likely cause the switch to behave differently after an MSM failover, thereby defeating the intended purpose of redundant peer MSMs.

The significance in the MSM failover behavior is that is affected by, and affects the use of the diagnostics, and can also affect and be affected by the way you configure the software exception handling options such as the system watchdog, system recovery level, and reboot loop protection. For example, if you select the “shutdown” option in the configure sys-recovery-level command, one of the actions the software routine performs is to instruct the slave MSM in a BlackDiamond switch not to monitor the master MSM, to prevent MSM failover from occurring.

NOTE

The MSM-3 uses technology that provides “hitless” failover, meaning the MSM-3 transitions through a failover with no traffic loss and no switch downtime, while it maintains active links and preserves layer 2 state tables. Contrast this performance to the failover process of MSM64i modules, which can take the switch down for approximately 30 seconds. The MSM-3 makes hitless upgrades possible. It is supported in ExtremeWare release 7.1.1 and later.
Configuring System Recovery Actions

ExtremeWare provides a user-configurable system recovery software diagnostic tool whose main function is to monitor the system boot processes. If an error occurs during the POST, the system enters a fail-safe mode that allows the network or system administrator to view logs and troubleshoot the fault.

The system recovery behavior can also be configured to ensure that no software exception errors occur during normal runtime operation. Although exception errors are extremely rare, they are possible. Task exceptions can lead to unpredictable network behavior. For this reason, it is important to plan for such a situation and configure the system to react in the appropriate manner: several configurable variables can be set to determine the action the system takes should an exception error occur.

Related Commands

configure sys-recovery-level
configure system-dump

Configuring System Recovery Actions on “i” Series Switches

To specify a system recovery scheme for “i” series switches when a software exception occurs, use this command:

```
configure sys-recovery-level [none | [all | critical] [msm-failover | reboot | shutdown | system-dump [maintenance-mode | msm-failover | reboot | shutdown]]]
```

where:

- **none**: No recovery action is taken when a software exception occurs (no system shutdown or reboot, etc.). This is the default action.
- **all**: If any task exception occurs, ExtremeWare logs an error in the system log and automatically initiates the configured response action, selected from among the following options:
 - **msm-failover**: (BlackDiamond switches only.) If there is a software exception on the master MSM, the slave MSM takes over control of the switch.
 - **reboot**: Reboots the switch.
 - **shutdown**: Shuts down the switch (see “Usage Notes,” below).
 - **system-dump**: (Available only on switches with Ethernet management ports.) This option should be used only with assistance from TAC. Initiates a memory dump transfer to a remote TFTP dump server, followed by one of the following completion actions: msm-failover, reboot, shutdown, or maintenance-mode.

 Three of the completion actions under the system-dump option—msm-failover, reboot, and shutdown—are the same as described above. The remaining completion action for the system-dump option, maintenance-mode, leaves the switch in whatever state the dump transfer puts it in. Some subsystems might not work correctly, or work at all after a system dump.

 These four system dump completion actions specify the action to be taken when the system dump is complete. These actions occur whether or not the system dump was successful.

- **critical**: If a critical task exception occurs, ExtremeWare logs an error in the system log and automatically initiates the configured response action, selected from among the configuration options described for all, above. Critical tasks include the tBGTask, tNetTask, tEdpTask, and tEsrpTask.
Configuring System Recovery Actions on “e” Series Switches

To specify a system recovery scheme for “e” series switches when a software exception occurs, use this command:

```
configure sys-recovery-level [none | [all | critical]] [reboot]
```

where:

- **none**
 No recovery action is taken when a software exception occurs (no system shutdown or reboot, etc.). This is the default action.

- **all**
 If any task exception occurs, ExtremeWare logs an error in the system log and, if configured, automatically initiates the optional response action **reboot** (reboots the switch).

- **critical**
 If a critical task exception occurs, ExtremeWare logs an error in the system log and, if configured, automatically initiates the optional response action **reboot** (reboots the switch). Critical tasks include the tBGTask, tNetTask, tEdpTask, and tEsrpTask.

Usage Notes

When you configure the **shutdown** option, and a software exception occurs, the system takes these actions:

- All watchdogs and timers are stopped.
- All tasks except the following are suspended:
 - tSwFault
 - tLogTask
 - tSyslogTask
 - tShell
 - tConsole
 - tExtTask
 - tExcTask
 - The root task
- On BlackDiamond and Alpine switches, the I/O modules are powered down.
- On BlackDiamond switches, the slave MSM is instructed not to monitor the master MSM.

When the **MSM-failover** option is configured on a system equipped with MSM-64i modules and an error occurs, the system requires a system reboot, so the impact to the system is basically the same as for the **reboot** option.

When the **MSM-failover** option is configured on a system equipped with MSM-3 modules and an error occurs, the system does not require a system reboot, so there is no service outage.

When the **reboot** option is configured on a system and an error occurs, the system is rebooted, causing loss of connectivity to all modules. All software tasks are restarted, so any exception error is cleared and the task restarted. If the task cannot be restarted, the system will fail the POST and will remain in limited operation mode for further troubleshooting.

When the **shutdown** option is configured on the system and an error occurs, the system is shut down and held out of service. This option offers administrators the ability to restore the system and reinsert it
back into the network during a scheduled outage window. This might be an advantage if all connected nodes are dual-homed, as a reinsertion will trigger a network reconvergence and an additional service outage.

NOTE

Under the reboot or shutdown options, network redundancy protocols will work to recover the network. The only difference between these two options, in this case, is that under the reboot option the reinsertion of the system triggers a second network convergence. The impact of the reconvergence depends on the network topology and configuration (for example, OSPF ECMP versus a large STP network on a single domain).

Also, if the system-recovery-level condition is set to none, the network might become subject to unpredictable system behavior and—possibly—extensive system outages. Depending on the task that experiences the exception error, the result might be corrupt routing tables and routing/broadcast loops.
Configuring Reboot Loop Protection

Reboot loop protection prevents a failure that persists across a reboot from putting the switch into an endless cycle of reboots. Reboot loop protection is helpful to increase network stability in the event that some systematic problem is causing the watchdog timer to expire or a software exception to be triggered repeatedly. You can configure a reboot threshold and a history timer. If more than the threshold number of automatic reboots occurs within the history timer interval, the system boots into minimal mode with all ports disabled. For more information about minimal mode, see Appendix A.

NOTE

This capability can be helpful when there are two systems in a redundant configuration: If the reboot loop happens, the rebooting system will end up offline and its redundant peer will take over until the switch stuck in the reboot loop has been fixed.

In a non-redundant configuration, the use of this feature might result in the lone switch being taken offline permanently.

Related Commands

configure reboot-loop-protection threshold
show switch
show configuration

Configuring Reboot Loop Protection

To configure reboot loop protection, use the following command:

```
configure reboot-loop-protection threshold <time-interval> <count>
```

where:

- **time-interval**
 The time period, in minutes, during which the switch is permitted to reboot the number of times specified in **count**, before entering minimal mode. The period is a number in the range from 0 to 255 minutes. The recommended setting is 10 minutes.

- **count**
 The number of reboots within the period specified as **time-interval**. The count is a number in the range from 1 reboot to 7 reboots.

- By default, the reboot loop protection feature is disabled. If you enable the feature, the recommended period for the time-interval threshold is 10 minutes.
- Specifying a time interval of 0 minutes disables the feature; specifying any other value enables it.
- If you specify a value for **time-interval**, but not for **count**, the default value for **count** is 3 reboots.
- If you reboot the switch manually, or use either the `run msm-failover` command or the `show configuration` command, the time interval and count are both reset to 0.
- To view the current settings, use the `show switch` or `show configuration` commands.
- The reboot loop protection settings are stored in the switch memory, but are not saved in the switch configuration. In a BlackDiamond switch equipped with redundant MSM64i modules, the `synchronize` command does transfer the reboot loop protection settings to the synchronized MSM64i.
On BlackDiamond switches you can configure the number of times the slave MSM can reboot within a configured time limit or configure the slave MSM to use the global reboot-loop-protection configuration.

Use one of the following commands:

```
configure reboot-loop-protection backup-msm threshold <time-interval> <count>
```

Or

```
configure reboot-loop-protection backup-msm threshold use-master-config
```

Use this command to configure the switch to use the global reboot-loop-protection configuration.

where:

- **time-interval**

 The time period, in minutes, during which the slave MSM is permitted to reboot the number of times specified in `count`, before entering minimal mode. The period is a number in the range from 0 to 255 minutes. The recommended setting is 10 minutes.

- **count**

 The number of reboots within the period specified as `time-interval`. The count is a number in the range from 1 reboot to 7 reboots.
Dumping the “i” Series Switch System Memory

On “i” series switches, you can dump (copy and transfer) the contents of the system DRAM memory to a remote TFTP host so that it can be passed to an Extreme Networks technical support representative who will examine and interpret the dump results. The system dump only works through the Ethernet management port.

NOTE
The system dump procedure is used only for troubleshooting, and should be used only with assistance from Extreme Networks technical support.

Related Commands
- `configure sys-recovery-level`
- `configure system-dump server`
- `configure system-dump timeout`
- `upload system-dump`
- `show system-dump`

Configuring an Automatic System Dump During System Recovery

You can configure the system dump as an automatic response to a software exception using the `configure sys-recovery-level` command. You can also initiate a system dump manually using the `upload system-dump` command.

NOTE
The system dump commands are available only on the “i” series switches.

To configure an automatic system dump as the system recovery response action, perform these steps:

- Configure the IP address of the remote TFTP dump server.

 To configure the IP address of the remote TFTP dump server to which the dump is to be transferred (if the system-dump option is specified in the `configure sys-recovery-level system-dump` command), use this command:
  ```
  configure system-dump server <ip address>
  ```

 The IP address must be reachable through the VLAN `mgmt`. This IP address is also used if no IP address is specified in the `upload system-dump` command.

- Set a system dump timeout (optional).

 To configure an optional timeout for the dump transfer (if the system-dump option is specified in the `configure system-recovery-level system-dump` command), use this command:
  ```
  configure system-dump timeout <seconds>
  ```

 The minimum non-zero value is 120 seconds. The recommended value is 480 seconds. The default is 0 seconds (no timeout).
Software Exception Handling

- Configure the system dump as a system recovery response action.

To specify a system memory dump if a software exception occurs, use this command:

```plaintext
configure sys-recovery-level [all | critical] system-dump [maintenance-mode | msm-failover | reboot | shutdown]]
```

where:

- **all**
 - If any task exception occurs, ExtremeWare logs an error in the system log and automatically initiates a memory dump transfer to a remote TFTP dump server, followed by one of the following completion actions: `<msm-failover; reboot, shutdown, or maintenance-mode>`. These completion actions are described in “Configuring System Recovery Actions” on page 40.

- **critical**
 - If a critical task exception occurs, ExtremeWare logs an error in the system log and automatically initiates a memory dump transfer to a remote TFTP dump server, followed by one of the following completion actions: `<msm-failover, reboot, shutdown, or maintenance-mode>`. These completion actions are described in “Configuring System Recovery Actions” on page 40.

- To turn off the system dump action in the system-recovery-level process, use this command:

```plaintext
unconfigure system-dump
```

- To display the configured values for the system-dump server and system-dump timeout settings, use this command:

```plaintext
show system-dump
```

When neither the server IP address nor the timeout parameter has been configured, the `show system-dump` command display looks like this:

```
Server ip : none
Dump timeout : none
```

When both the server IP address and the timeout parameter have been configured, the `show system-dump` command display looks similar to this example:

```
Server ip : 10.5.2.82 (ok)
Dump timeout : 300 seconds
```

When the configured server IP address is unreachable, the `show system-dump` command display looks similar to this example:

```
Server ip : 10.45.209.100 - currently unreachable via “Mgmt” vlan
dump timeout : none
```

Initiating a Manual System Dump

To initiate a manual system dump to a remote TFTP dump server, identified by its IP address, use the following command:

```plaintext
upload system-dump [<ip address>]
```

If you do not specify an IP address, the system attempts to use the IP address specified in the `configure system-dump server` command.
Example Log for a Software Exception

The following log is taken after simulating a BGTask crash.

The System recovery level, for critical events, is set to system shutdown. Hence, when BGTask crashed, all I/O modules in the system was shutdown.

12/23/2000 23:15:13.75 <Info:SYST> Set card 8 to Non-operational
12/23/2000 23:15:13.73 <Info:SYST> Port 8:3 link down
12/23/2000 23:15:13.73 <Info:SYST> Port 8:2 link down
12/23/2000 23:15:13.73 <Info:SYST> Port 8:1 link down
12/23/2000 23:15:13.72 <Info:SYST> Card in slot 8 is off line
12/23/2000 23:15:11.58 <Info:SYST> Card in slot 7 is off line
12/23/2000 23:15:10.48 <Info:SYST> Set card 6 to Non-operational
12/23/2000 23:15:08.27 <Info:SYST> Card in slot 4 is off line
12/23/2000 23:15:07.15 <Info:SYST> Card in slot 3 is off line
12/23/2000 23:15:07.15 <Warn:SYST> 00x80793b70 twisterMemoryToBuffer+48: fetchPacketMore(381, 6gXBuffer, 0, 0)
12/23/2000 23:15:07.11 <Warn:SYST> 00x800b9500 BGTask2_G2 +7cc: twisterMemoryToBuffer(********,********,********,********,200bb)
12/23/2000 23:15:07.04 <Summ:KERN> 0x81848670: 00 38 00 39 00 3a 00 3b 00 3c 00 3d 00 3e 00 3f
12/23/2000 23:15:07.04 <Summ:KERN> 0x81848660: 00 30 00 31 00 32 00 33 00 34 00 35 00 36 00 37
12/23/2000 23:15:07.04 <Summ:KERN> 0x81848650: 00 28 00 29 00 2a 00 2b 00 2c 00 2d 00 2e 00 2f
12/23/2000 23:15:07.04 <Summ:KERN> 0x81848640: 00 20 00 21 00 22 00 23 00 24 00 25 00 26 00 27
12/23/2000 23:15:07.04 <Crit:KERN> inFlags=120 eType=bb offset=1a gMbuf=0
12/23/2000 23:15:07.04 <Warn:SYST> Task: 0x8da2fe30 "tBGTask"
12/23/2000 23:15:07.04 <Warn:SYST> Task: 0x8da2fe30 "tBGTask"
12/23/2000 23:15:07.04 <Warn:SYST> Task: 0x8da2fe30 "tBGTask" Task tBGTask(8da2fe30) failed
This chapter describes how to configure and use the Extreme Advanced System Diagnostics.

This chapter contains the following sections:

- Diagnostic Test Functionality on page 49
- System Health Checks: A Diagnostics Suite on page 52
- Power On Self Test (POST) on page 56
- Runtime (On-Demand) System Diagnostics on page 57
- Automatic Packet Memory Scan (via sys-health-check) on page 60
- Per-Slot Packet Memory Scan on BlackDiamond Switches on page 67
- System (CPU and Backplane) Health Check on page 70
- Transceiver Diagnostics on page 82
- FDB Scan on page 88

Diagnostic Test Functionality

Before you use any of the ExtremeWare diagnostic tests, you must understand some of the basics about how a given diagnostic test functions (what it does; how it does it) as well as how your use of that diagnostic test affects the availability of the switch and the network. This section provides information on these topics:

- Manual initiation of tests vs. automatic, proactive initiation of tests
- Invasive tests vs. non-invasive tests
- Passive tests vs. active tests
- Control path vs. data path

How Diagnostic Tests are Run

Some diagnostic tests, such as the POST, run automatically each time the switch is booted, to validate basic system integrity. Through ExtremeWare CLI commands, you can turn the POST off, or set it to run in either of three modes: FastPOST (faster-running, basic test sequence), normal (basic test sequence), or extended (more thorough, but longer-running test sequence).
Some diagnostic tests, such as the slot-based hardware diagnostics (including the packet memory scan), for example, can be run on demand through user CLI commands. Other tests can be run on demand by user CLI commands and can also be configured to observe specific user-selected settings.

All of the ExtremeWare diagnostic tests can be coordinated under the umbrella of the ExtremeWare system health check feature, which runs automatic background checks to detect packet memory errors and take automatic action when errors are found. The system health check feature is enabled by a CLI command on a switch-wide basis, and the operating parameters and failure responses of the various diagnostic subsystems can be configured through CLI commands. As a diagnostic system, the system health check tests try to detect and resolve possible problem situations before they become a problem, using the diagnostic subsystems in a manner that parallels operator-initiated tests in manual mode.

Operating in manual mode, when the system log reports errors or failures, you would run the appropriate diagnostic test set to isolate the source of the problem. Depending on the nature of the diagnostic test (suppose the diagnostic test takes the module or switch offline while the diagnostic test runs), you must be aware of the downtime impact when you run the diagnostic test.

Operating in automatic mode, the proactive nature of the system health checker and its diagnostic test subsystems means that a module or switch might be taken offline automatically when an error is detected, possibly resulting in extensive network outages.

The key to effective diagnostic use in optimizing network availability lies in understanding what happens in the switch when a given test is run.

How the Test Affects the Switch

The impact a diagnostic test has on switch operation is determined by the following characteristics:

- Invasive versus non-invasive
- Passive versus active
- Control path versus data path

Some diagnostic tests are classed as invasive diagnostics, meaning that running these diagnostics requires the switch to be partly or entirely offline (system traffic is interrupted). Some invasive diagnostics take down just the module in the targeted chassis slot for the duration of the test; some diagnostics take down the entire switch. Some invasive diagnostics can be invoked manually through a CLI command; other diagnostics can be configured as part of the system health checks to become active only when certain kinds of packet memory errors occur within configured window periods or at configured threshold levels.

Other diagnostic tests are classed as non-invasive, meaning that running them does not take the switch offline, but that they can still affect the overall performance, depending on whether the non-invasive test is a passive test or an active test, and uses the management or control bus (see Figure 10) or the data bus during the test:

- In a passive test, the test merely scans switch traffic (packet flow) for packet memory errors.
- In an active test, the test originates test messages (diagnostic packets) that it sends out and then validates to verify correct operation.

Figure 9 and *Figure 10* show the same simplified BlackDiamond architecture block diagram of an I/O module, backplane links, and MSM, but each illustrates how different tests use the management bus (also referred to as the CPU control bus or the slow path) and the data bus (or fast path).
Diagnostic tests are processed by the CPU. When invoked, each diagnostic test looks for different things (device problems, communication-path problems, etc.), and uses either the control bus or the data bus, or—in some cases—both buses to perform the test.

For example, Figure 9 shows a simplified example of the CPU health check test. The CPU health check test sends five different diagnostic packets across the control bus to each I/O module. From the I/O module, the packets are looped back to the CPU across the control bus. The CPU inspects the packets for loss or errors.

Figure 9: CPU health check path (BlackDiamond architecture)

Figure 10 shows a simplified example of the backplane health check test. In the backplane health check, the CPU uses the control bus to load test packets into the fabric of the MSM. The packets are then transferred across the backplane from the MSM to the fabric on a given I/O module. The health check packets are then returned to the CPU which processes the results.

Figure 10: Backplane health check path (BlackDiamond architecture)
System Health Checks: A Diagnostics Suite

Keep in mind that the goal of the diagnostics suite is to help users achieve the highest levels of network availability and performance by having system hardware, software, and diagnostics work together to reduce the total number of failures and downtime through:

- More accurate reporting of errors (fewer false notifications; more information about actual errors)
- Early detection of conditions that lead to a failure (so that corrective action can be taken before the failure occurs)
- Automatic detection and correction of packet memory errors in the system’s control and data planes

Diagnostic Suite Components

The components that make up the diagnostic test suite include:

- Power on self test (POST)
 - Runs at system boot
 - Offers configurable levels
- Runtime, slot-based diagnostics
 - Normal, extended, and packet memory scan
 - Run on demand by user command
— Offer configurable levels
— Remove the switch fabric from service for the duration of the tests

- Background packet memory scanning and mapping
 — Checks all packet storage memory for defects
 — Potentially maps out defective blocks

- Backplane and CPU health checks
 — Checks end-to-end integrity on communication paths between the CPU and all I/O modules
 — Takes automatic action when errors are detected

- Upper layer protocol validation
 — Extreme Discovery Protocol (EDP) continuous polling
 — Validation of TCP and other protocols

- FDB check
 — Run on demand by user
 — Compares existing software FDB entries with hardware forwarding tables

- Background FDB memory scanning
 — Tied to the system health check configuration
 — Runs in background
 — Scans the FDB memory for possible defects
 — Remap function marks suspect entries against future use

- Background transceiver scanning
 — Tied to the system health check configuration
 — Runs in background to detect potential control path faults
 — Tests internal transceiver data paths
 — Tests all ASICs for proper read/write operations

The Role of Memory Scanning and Memory Mapping

The memory scanning and memory mapping functions identify and attempt to correct switch fabric checksum errors. When you are in the process of implementing the ExtremeWare diagnostics, keep in mind that these functions are an underlying base for much of what takes place in the diagnostic tests that make up the system health checks diagnostic suite. For more information, see Chapter 3, “Packet Errors and Packet Error Detection.”

NOTE

Memory scanning addresses switch fabric checksum errors detected in the packet memory area of the switching fabric. The memory scanning and mapping features are supported only on “i” series Summit, Alpine, and BlackDiamond switches.

The ExtremeWare memory scanning and memory mapping diagnostics are analogous to hard disk scanning tools, which are used to detect and map out bad sectors so that the drive can remain operational with no adverse effects on performance, capacity, or reliability. The ExtremeWare memory
scanning and memory mapping diagnostics are used to identify and correct switch fabric checksum errors.

Memory scanning and memory mapping are two separate functions: scanning detects the faulted portion of the memory; mapping re-maps the memory to remove the faulted memory section.

Memory scanning is designed to help isolate one of the major root causes of fabric checksum errors: single-bit permanent (hard) failures. Memory scanning detects—with a high probability—all current single-bit permanent (hard) failures in the switch memory that would result in fabric checksum errors.

Memory mapping can correct up to eight of these detected permanent (hard) single-bit errors by reconfiguring the memory maps around the problem areas.

The packet memory scan examines every node of packet memory to detect packet errors by writing data to packet memory, then reading and comparing results. The test is invasive and takes the switch fabric offline to perform the test.

Errored cell correction:

- If the test detects eight or fewer error cells, those error cells will be mapped and excluded from use. The module will continue to operate.
- If the test detects more than eight error cells, the module is identified as “failed” and must be replaced.

You should use this test when the system log displays some intermittent or sporadic error messages that might indicate a problem, but do not provide sufficient information to confirm the problem or isolate the fault.

Modes of Operation

The Memory Scanning feature has two modes of operation:

- Manual mode (the default and recommended mode)
- Automatic mode (which should be used only in redundant networks)

NOTE

The memory scanning facility is a highly CPU intensive application and will consume full CPU cycles when executed.

Memory scanning is supported on the following “i” series platforms and modules:

- BlackDiamond 6816, BlackDiamond 6808, and BlackDiamond 6804
- BlackDiamond modules: MSM, F96Ti, F48Ti, G8Xi, G8Ti, G12SX, G16Xi, G16Ti, 10G Xenpak
- Alpine 3808, Alpine 3804, and Alpine 3802 (manual mode only)
- Summit48i, Summit7i, Summit5i, Summit1i, and Summit48si (manual mode only)

Manual Mode. A manual CLI command issued from any administrator level session initiates the manual mode, as its name implies, for initiating memory scanning. Note that when memory scanning is executed, it should be done so with the awareness that other tasks requiring CPU service cycles will be impacted.
Automatic Mode. Automatic mode for initiating a memory scan is set up when the system health check auto-recovery option is enabled (see “System (CPU and Backplane) Health Check” on page 70). When system health checks fail at the specified frequency, packet memory is invoked automatically.

Automatic mode status is listed in the “sys-health-check” field of the display for the `show switch` command.

When auto-recovery is configured, an automated background polling task checks every 20 seconds to determine whether any fabric checksums have occurred. Three consecutive samples must be corrupted for any module to invoke autoscan.

CAUTION

If the automatic mode is invoked—regardless of the “i” series platform type or number of errors—there is an initial period where the device is taken offline so that the scan can be run.

The ExtremeWare diagnostics suite provides packet memory checking capabilities on “i” series Summit, Alpine, and BlackDiamond systems at four levels:

- **Manually, as a subset of the extended system diagnostic,** through the command:

 `run diagnostics extended`

- **Manually, through the command:**

 `run diagnostics packet-memory`

 These two options are available on “i” series Summit, Alpine, and BlackDiamond systems, and are described in “Runtime Diagnostics on “i” Series Systems” on page 57.

- **Automatically, as a background task under the global system health check umbrella,** as configured in the commands:

 `enable sys-health-check`

 `configure sys-health-check auto-recovery <number of tries> [offline | online]`

 (BlackDiamond)

 `configure sys-health-check alarm-level auto-recovery [offline | online]` (Alpine or Summit)

 This option is available on “i” series Summit, Alpine, and BlackDiamond systems, and is described in “System (CPU and Backplane) Health Check” on page 70.

- **Automatically, on a per-slot basis,** to scan and check the health of a specific BlackDiamond module, as configured in the command:

 `configure packet-mem-scan-recovery-mode`

 This option is available on BlackDiamond systems only, and is described in “Per-Slot Packet Memory Scan on BlackDiamond Switches” on page 67.

The Role of Processes to Monitor System Operation

When you are in the process of implementing the ExtremeWare diagnostics, keep in mind the software fault recovery features built into Extreme hardware and software products to detect and respond to problems to maximize switch reliability and availability. The System-Watchdog, System-Recovery-Mode, and Reboot-Loop-Protection functions ensure that the switch can not only pass all POST test diagnostics, but also verify that all processes continue to perform properly during runtime operation. For more information, see Chapter 4, “Software Exception Handling”.
Power On Self Test (POST)

The POST actually consists of two test processes: a “pre-POST” portion that runs before the POST, and the POST itself. The entire POST (both portions) runs every time the system is booted. It tests hardware components and verifies basic system integrity. The POST can be configured to run in normal or extended mode. The default is normal mode because it consumes less time.

The pre-POST test is a bootup process that tests CPU memory, Universal Asynchronous Receiver/Transmitter (UART) parts, ASIC registers and memory.

The POST tests the following switch elements (depending on the module type: MSM or I/O module):

- Register ASIC on the CPU
- Real Time Clock
- Management port PCI memory, PCI interface, and transceiver loopback
- Register ASICs (Twister, Quake, MAC, Triumph ASICs)
- Memory (Twister ACL, Quake external memory, MAC memory, Triumph external memory)
- Built-in self test (BIST) in ASICs (Twister, MAC, Triumph)
- Loop-back test (ready state initialization; MAC loop-back test; IP route loop-back test)

Related Commands

configure diagnostics [extended | fastpost | normal | off | verbose | quiet]
unconfigure switch all
show diagnostics [slot [msm-a | msm-b | <slot number>]]
show switch

Configuring the Boot-Up Diagnostics

To configure the boot-up diagnostics, use this command:

configure diagnostics [extended | fastpost | normal | off | verbose | quiet]

where:

- **extended**
 Specifies that the extended diagnostic routine be run each time the switch boots. The extended POST routine takes the switch fabric and ports offline, and performs extensive ASIC, ASIC-memory, and packet memory tests.

- **fastpost**
 Specifies that the fastpost diagnostic routine be run each time the switch boots. The fastpost routine takes the switch fabric offline and performs a simple ASIC test. The fastpost routine is the default.

- **normal**
 Specifies that the normal diagnostic routine be run each time the switch boots. The normal POST routine takes the switch fabric and ports offline, and performs a simple ASIC and packet loopback test on all the ports.

- **off**
 Specifies that no diagnostic routine be run when the switch boots.

- **verbose**
 Specifies that the results of every test are recorded in the log. The verbose option is not saved through a reboot, so you must reconfigure verbose mode after running diagnostics.

- **quiet**
 Specifies that only the pass or fail result is recorded in the log.
Runtime (On-Demand) System Diagnostics

The ExtremeWare diagnostics test suite offers a set of one-time test routines that can be run on demand by user command. Depending on the switch platform and model—differences in hardware architecture determine what aspects of the diagnostic tests apply, these tests are activated by different commands and different user-configurable options.

- **“i” series switches**—The BlackDiamond family of core chassis switches (6804, 6808, and 6816), the Alpine systems (3802, 3804, 3808), and the Summit “i”-series stackables (Summit1i, Summit5i, Summit7i, Summit 48i, and Summit48Si).

NOTE

Only run these diagnostics when the switch or module can be brought off-line. The tests performed are extensive and affect traffic that must be processed by the system CPU, because the diagnostics are processed by the system CPU.

Runtime Diagnostics on “i” Series Systems

On “i” series systems, there are three categories of runtime diagnostics:

- **Normal System Diagnostics**—These tests take the switch fabric and ports offline and perform a simple, fast ASIC and packet loopback test on all switch fabric ports. The normal tests are completed in approximately 30 seconds.

 The normal system diagnostics test the following switch elements (depending on the switch type—Summit or Alpine vs. BlackDiamond, and—for BlackDiamond systems—the module type being tested: MSM or I/O module):
 - Register ASIC on the CPU
 - Real Time Clock
 - Management port PCI memory, PCI interface, and transceiver loopback
 - Register ASICs (Twister, Quake, MAC, Triumph ASICs)
 - Memory (Twister ACL, Quake external memory, MAC memory, Triumph external memory)
 - Built-in self test (BIST) in ASICs (Twister, MAC, Triumph)
 - Loop-back test (ready state initialization; MAC loop-back test; IP route loop-back test)

- **Extended System Diagnostics**—These tests take the switch fabric and ports offline and perform extensive ASIC, ASIC-memory, and packet loopback tests. The extended tests take a maximum of 15 minutes.

 These diagnostics test hardware components to verify basic system integrity. These diagnostics are invasive. You should use these diagnostics when the syslog displays some intermittent or sporadic error messages that might indicate a problem, but does not provide sufficient information to confirm the problem or isolate the fault. The extended system diagnostics help verify whether the error messages indicate soft, transient errors or hard faults.

 The extended system diagnostics test the same set of switch elements as the normal diagnostics described above (depending on the switch type—Summit or Alpine vs. BlackDiamond, and—for
BlackDiamond systems—whether the module type being tested is an MSM or an I/O module), but adds the following two test sets:

— Packet memory test (where possible, this test also attempts to remap up to eight errors)
— Additional loop-back tests: Big packet (4k) MAC, transceiver, VLAN

• **On Demand Packet Memory Scan**—The packet memory test scans the switch fabric in the switch (Summit or Alpine) or the module in the specified slot (BlackDiamond only) for single-bit packet memory defects.

While the packet memory scan is normally invoked and runs as part of the extended system diagnostics, it can also be run independently to identify and correct errors in the packet memory area.

The packet memory scan diagnostic scans the specified module (in a BlackDiamond switch), the passive backplane of an Alpine switch, or the switch fabric in a Summit switch to detect single-bit memory defects and their associated buffer locations.

Related Commands

- `run diagnostics [normal | extended | packet-memory] [slot [msm-a | msm-b | <slot number>]]`
- `configure diagnostics [extended | fastpost | normal | off]`
- `show diagnostics [slot [msm-a | msm-b | <slot number>]]`
- `show diagnostics packet-memory slot <slot number>`

Running the Diagnostics on BlackDiamond Systems

These runtime diagnostics can be run on specific slots in a BlackDiamond switch. These tests check the CPU subsystem, the switch fabric subsystem (MSMs and I/O modules), and control and data path communication.

To run the diagnostics on a BlackDiamond system, use this command:

```
run diagnostics [extended | normal | packet-memory] slot [<slot-number> | msm-a | msm-b]
```

where:

- `normal`: Runs the normal diagnostic routine.
- `slot number`: Specifies an I/O module installed in a particular slot of a BlackDiamond chassis.
- `msm-a`: Specifies the MSM installed in slot A of a BlackDiamond chassis.
- `msm-b`: Specifies the MSM installed in slot B of a BlackDiamond chassis.

The command is only executed on one module at a time, but you can queue up two `run diagnostics` commands at a time.

Runtime Diagnostics on “I” Series Alpine and Summit Systems

To run the diagnostics on an Alpine or a Summit system, use this command:

```
run diagnostics_noslot [normal | extended | packet-memory]
```
System Impact of Running the Diagnostics on “f” Series Switches
These diagnostics are invasive diagnostics. The diagnostics perform different tests, depending on whether the test is being performed on the CPU subsystem or an individual I/O module. The diagnostics reset and erase all current hardware states. The impact of the diagnostics depends on the switch type and—in the case of the BlackDiamond switch—whether the module type being tested is an MSM or an I/O module (see Table 5).

Table 5: System Response to Invasive Diagnostics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlackDiamond; two MSM64i modules</td>
<td>Master MSM fails or diagnostics are run on master MSM</td>
</tr>
<tr>
<td>BlackDiamond; two MSM64i modules</td>
<td>Slave MSM fails or diagnostics are run on slave MSM</td>
</tr>
<tr>
<td>BlackDiamond; one MSM64i</td>
<td>MSM fails or diagnostics are run on MSM</td>
</tr>
<tr>
<td>Alpine</td>
<td>Switch fails or diagnostics are run on switch</td>
</tr>
<tr>
<td>Summit</td>
<td>Switch fails or diagnostics are run on switch</td>
</tr>
</tbody>
</table>

NOTE

When you run the packet memory diagnostic, the system displays a message warning about potential impacts on your switch and network (because the module—in a BlackDiamond switch—or the entire switch—for Alpine and Summit switches—will be taken offline during the time the diagnostic is running) and prompts you to confirm or cancel the test.

When you enter the `run diagnostics normal` command on a BlackDiamond with one MSM, an Alpine, or a Summit system, the system displays the following message and prompts you to confirm the action:

Running Normal diagnostics will reset the switch and disrupt network traffic. Are you sure you want to continue? yes/no

When you enter the `run diagnostics extended` command on a BlackDiamond with one MSM, an Alpine, or a Summit system, the system displays the following message and prompts you to confirm the action:

Running Extended diagnostics will reset the switch and disrupt network traffic. Extended diagnostic will also execute Packet Memory Scan........
WARNING: Device may be taken offline. To prevent this first configure “sys-health-check alarm-level auto-recovery online”
Are you sure you want to continue? yes/no

Runtime Diagnostics on “e” Series Systems
The ExtremeWare diagnostics tests for the “e” series switches is a set of one-time test routines that can be run on demand by user command. These tests check the CPU subsystem, the switch fabric subsystem, and control and data path communication.
NOTE

Only run these diagnostics when the switch can be brought off-line. The tests performed are extensive and affect traffic that must be processed by the system CPU, because the diagnostics themselves are processed by the system CPU.

Related Commands

run diags
diagnostic
show diags

Running the Diagnostics on Summit “e” Switches

To run the diagnostics on a Summit “e” system, use this command:

run diags [extended | normal | stack-port]

where:

extended (All Summit “e” switches.) The extended test routine takes the switch fabric and ports offline and perform extensive ASIC, ASIC-memory, and packet loopback tests. The extended tests take a maximum of 15 minutes.

normal (All Summit “e” switches.) The normal test routine takes the switch fabric and ports offline and perform a simple, fast ASIC and packet loopback test on all switch fabric ports. The normal tests are completed in approximately 30 seconds.

stack-port (Summit 400 switches only.) The stack-port option runs the diagnostic test routine on the stacking port of the Summit 400 switch.

System Impact of Running the Diagnostics on Summit “e” Series Switches

These diagnostics are invasive diagnostics. The diagnostics perform different tests, depending on whether the test is being performed on the CPU subsystem or an individual I/O module. The diagnostics reset and erase all current hardware states. On the Summit “e” series switches, when the runtime diagnostics are activated (or the switch fails), the switch is offline and reboots.

When you enter the run diags command on a Summit “e” series switch, the test routine will display a message prompting you to confirm the diagnostic action. For example,

Running Normal diagnostics will reset the switch and disrupt network traffic. Are you sure you want to continue? yes/no

Automatic Packet Memory Scan (via sys-health-check)

An automatic packet memory scan is set up when the system health check auto-recovery option is enabled (see “System (CPU and Backplane) Health Check” on page 70). When system health checks fail at the specified frequency, packet memory scanning is invoked automatically.

NOTE

The automatic packet memory scan and system health check features are supported only on “i” series Summit, Alpine, and BlackDiamond switches.
Automatic mode status is listed in the “sys-health-check” field of the display for the `show switch` command.

When auto-recovery is configured, an automated background polling task checks every 20 seconds to determine whether any fabric checksums have occurred. Three consecutive samples must be corrupted for any module to invoke autoscan.

CAUTION

If automatic packet memory scanning is invoked—regardless of ‘i” series platform type or number of errors—there is an initial period where the device is taken offline so that the scan can be run.

Memory Scanning and Memory Mapping Behavior

Memory scanning and memory mapping behavior differs depending on the “i” series switch platform, whether you run the diagnostics manually or configure the auto-recovery option of the system health checker, and the mode you configure (online or offline).

For BlackDiamond systems, once the test is initiated (either automatically or by manual control), the memory scanning feature takes the selected module offline and initiates a thorough memory write/read operation to detect any permanent single-bit errors in the memory of the module. This scan takes approximately 90 seconds and the module remains offline for the duration of the scan.

For Summit “i” series and Alpine systems, the test is initiated by manual command, the entire switch is taken offline during the time test is running and is then rebooted.

Table 6 describes the behavior of the switch if you configure auto-recovery using the `configure sys-health-check` CLI command. The scan behavior differs based on the hardware configuration, the mode selected (online or offline), and the number of errors to be detected.

Table 6: Auto-recovery memory scanning and memory mapping behavior

<table>
<thead>
<tr>
<th>Platform</th>
<th>Online Mode</th>
<th>Offline Mode</th>
<th>New Errors Detected</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpine</td>
<td>•</td>
<td>•</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>>7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>0</td>
<td>Switch enters limited commands mode.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>>7</td>
<td>Errors not mapped; switch enters limited commands mode.</td>
</tr>
<tr>
<td>Summit “i” series</td>
<td>•</td>
<td>•</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>1-7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>>7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>0</td>
<td>Switch enters limited commands mode.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>>7</td>
<td>Errors not mapped; switch enters limited commands mode.</td>
</tr>
<tr>
<td>BlackDiamond with one MSM64i (or slave MSM64i is offline)</td>
<td>•</td>
<td>•</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>1-7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>>7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>0</td>
<td>Switch enters limited commands mode.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>>7</td>
<td>Errors not mapped; switch enters limited commands mode.</td>
</tr>
</tbody>
</table>
Table 7 describes the behavior of the switch if you run diagnostics manually on “i” series switches using the run diagnostics CLI command with the normal option. The behavior differs based on the hardware configuration, the mode selected (online or offline) using the configure sys-health-check CLI command, and the number of errors to be detected.

Table 7: Manual diagnostics memory scanning and memory mapping behavior, normal

<table>
<thead>
<tr>
<th>Platform</th>
<th>Online Mode</th>
<th>Offline Mode</th>
<th>New Errors Detected</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpine</td>
<td>•</td>
<td></td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td></td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td></td>
<td>>7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td>Alpine</td>
<td>•</td>
<td></td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td></td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td></td>
<td>>7</td>
<td>Errors not mapped; switch enters limited commands mode.</td>
</tr>
</tbody>
</table>
Table 7: Manual diagnostics memory scanning and memory mapping behavior, normal (continued)

<table>
<thead>
<tr>
<th>Platform</th>
<th>Online Mode</th>
<th>Offline Mode</th>
<th>New Errors Detected</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summit “i” series</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; switch enters limited commands mode.</td>
</tr>
<tr>
<td>BlackDiamond with one MSM64i or</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td>slave MSM64i is offline</td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; switch kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; switch enters limited commands mode.</td>
</tr>
<tr>
<td>BlackDiamond with two MSM64i modules; error on master</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Master MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; master MSM64i fails over.</td>
</tr>
<tr>
<td>BlackDiamond with two MSM64i modules; error on slave</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; slave MSM64i enters limited commands mode.</td>
</tr>
<tr>
<td>BlackDiamond 6816 MSM64i modules in slots C and D</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; MSM64i kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; MSM64i taken offline.</td>
</tr>
<tr>
<td>Alpine and BlackDiamond “i” series I/O modules</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Module kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; module kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; module kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>Module kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>1-7</td>
<td>Errors mapped; module kept online.</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>>7</td>
<td>Errors not mapped; module taken offline.</td>
</tr>
</tbody>
</table>

Table 8 describes the behavior of the switch if you run diagnostics manually on “i” series switches using the run diagnostics CLI command with the extended option. The behavior differs based on the hardware configuration and whether errors are detected (the mode selected has no effect).

Table 8: Manual diagnostics memory scanning and memory mapping behavior, extended

<table>
<thead>
<tr>
<th>Platform</th>
<th>Errors Detected?</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpine</td>
<td>Yes</td>
<td>Switch enters limited commands mode.</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Switch kept online.</td>
</tr>
<tr>
<td>Summit “i” series</td>
<td>Yes</td>
<td>Switch enters limited commands mode.</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Switch kept online.</td>
</tr>
</tbody>
</table>
Limited Operation Mode

A switch enters limited operation mode when some system health check action prevents it from booting. In limited operation mode, all tasks are suspended, I/O modules are powered down, and a limited set of commands are available for troubleshooting or corrective action. Both manual and automatic diagnostics results can put the switch into limited operation mode.

In limited operation mode, only the CPU, NVRAM, management port, console port, a limited set of system tasks, and a limited subset of CLI commands are active.

Ports are powered down so that links to adjacent devices do not come up. The switch fabric is not operational. Limited operation mode allows diagnostic work to be done on failed devices while redundant backup devices continue to operate.

For more information about limited operation mode, see Appendix A, “Limited Operation Mode and Minimal Operation Mode.”

Effects of Running Memory Scanning on “i” Series Switches

The packet memory scan is an invasive diagnostic. The impact of the packet memory scan depends on the “i” series switch type and—in the case of the BlackDiamond switch—whether the BlackDiamond is equipped with a single MSM or redundant MSMS.

Summit, Alpine, or BlackDiamond with a Single MSM

Summit, Alpine, and single-MSM BlackDiamond systems are taken down during the time the packet memory scan is running.

BlackDiamond System with Two MSMS

During the scanning period, the module is taken offline. Expect a minimum offline time of 90 seconds. Up to eight correctable single-bit errors are corrected, with minimal loss to the total memory buffers.

In extremely rare cases, non-correctable errors are detected by memory scanning. In these circumstances, the condition is noted, but no corrective action is possible. When operating in the manual mode of memory scanning, the module is returned to online service after all possible corrective actions have been taken.
During the memory scan, the CPU utilization is high and mostly dedicated to executing the diagnostics—as is normal for running any diagnostic on the modules. During this time, other network activities where this system is expected to be a timely participant could be adversely affected, for example, in networks making use of STP and OSPF.

The alarm-level option of the global system health check facility does not attempt to diagnose a suspected module; instead, it simply logs a message at a specified level.

The auto-recovery option does attempt to diagnose and recover a failed module a configured number of times. You should plan carefully before you use this command option. If you enable the system health check facility on the switch and configure the auto-recovery option to use the offline auto-recovery action, once a module failure is suspected, the system removes the module from service and performs extended diagnostics. If the number of auto-recovery attempts exceeds the configured threshold, the system removes the module from service. The module is permanently marked “down,” is left in a non-operational state, and cannot be used in a system running ExtremeWare 6.2.2 or later. A log message indicating this will be posted to the system log.

NOTE

Keep in mind that the behavior described above is configurable by the user, and that you can enable the system health check facility on the switch and configure the auto-recovery option to use the online auto-recovery action, which will keep a suspect module online regardless of the number of errors detected.

Example log messages for modules taken offline:

```
01/31/2005 01:16.40 <INFO:SYST> Card in slot 1 is offline
01/31/2005 01:16.40 <INFO:SYST> card.c 2035: Set card 1 to Non-operational
01/31/2005 01:16.40 <INFO:SYST> Card in slot 2 is offline
01/31/2005 01:16.44 <INFO:SYST> card.c 2035: Set card 2 to Non-operational
01/31/2005 01:16.44 <INFO:SYST> Card in slot 3 is offline
01/31/2005 01:16.46 <INFO:SYST> card.c 2035: Set card 3 to Non-operational
01/31/2005 01:16.46 <INFO:SYST> Card in slot 4 is offline
01/31/2005 01:16.46 <INFO:SYST> card.c 2035: Set card 4 to Non-operational
```
Interpreting Memory Scanning Results

If single-bit permanent errors are detected on an “i” series switch during the memory scanning process, these errors will be mapped out of the general memory map with only a minimal loss to the total available memory on the system.

Example `show diagnostics messages for memory scanning`:

```
Diagnostic Test Result run on Thu May 23 14:24:44 2005

Slot : B
CPU System | Passed
Registers Test | Passed
Memory Test
Packet memory test Passed
NOTICE: Packet memory test found 2 error(s) that have been successfully remapped
| Passed
System Test Passed

Packet memory defect info for card MSM-B
Num of defects = 2, num of recoverable defects = 2
Defect information:

Defect entry 1
  recoverable: Yes
  mem ID = 4
  bit position = 4
  address = 0x2d2
Defect entry 2
  recoverable: Yes
  mem ID = 0
  bit position = 8
  address = 0x8ca0
```
Per-Slot Packet Memory Scan on BlackDiamond Switches

While the system health check auto-recovery mode is effective at recovering from suspected failures, it does not provide the depth of control over recovery options that many network administrators require. The per-slot packet memory scan capability on BlackDiamond switches gives administrators the ability to set the recovery behavior for each module—an important distinction when only certain modules can be taken offline, while others must remain online no matter what the error condition.

NOTE

This capability is available only on BlackDiamond switches.

You can scan and check the health of individual BlackDiamond modules rather than the entire system by configuring packet memory scanning on a per slot basis. When you have the system health check facility configured for auto-recovery and you configure packet memory scanning on a BlackDiamond slot, you can define the behavior to be applied to the module in that slot when an error is detected. By default, packet memory scanning on a per slot basis is disabled.

Related Commands

- `configure packet-mem-scan-recovery-mode [offline | online] slot [msm-a | msm-b | <slot number>]`
- `unconfigure packet-mem-scan-recovery-mode slot [msm-a | msm-b | <slot number>]`
- `show packet-mem-scan-recovery-mode`

Configuring the Packet Memory Scan Recovery Mode

To configure packet memory scanning on a BlackDiamond module, use this command:

```
configure packet-mem-scan-recovery-mode [offline | online] slot [msm-a | msm-b | <slot number>]
```

where:

- `offline` Specifies that a module is to be taken offline and kept offline when one of these conditions is true:
 - More than eight defects are detected.
 - No new defects were found by the memory scanning and mapping process.
 - The same checksum errors are again detected by the system health checker.

- `online` Specifies that a faulty module is to be kept online regardless of any errors detected.

- `msm-a` Specifies the MSM installed in slot A.

- `msm-b` Specifies the MSM installed in slot B.

- `slot number` Specifies the module installed in a particular slot.

NOTE

The setting values for this command override the settings in the global system health check auto-recovery configuration. If you have the system health check alarm-level option configured, the per-slot packet memory scanning configuration is ignored. For more information about the system health check facility, see “System (CPU and Backplane) Health Check” on page 70.
To disable packet memory scanning on a BlackDiamond module and return to the behavior configured for the global system health check facility, use this command:

```
unconfigure packet-mem-scan-recovery-mode slot [msm-a | msm-b | <slot number>]
```

To view the recovery mode configuration for BlackDiamond slots that have per-slot packet memory scanning enabled, use this command:

```
show packet-mem-scan-recovery-mode
```

which displays the following information:

- Global settings for the system health check facility
- Auto-recovery settings for slots that have per-slot packet memory scanning enabled

Here is an example of output from this command:

```
Global sys-health-check 'online' setting is ONLINE
slot 3: AUTORECOVERY MODE is OFFLINE
MSM-B: AUTORECOVERY MODE is ONLINE
```

NOTE Global setting is always online for sys-health-check alarm-level configurations. It is only offline when 'sys-health-check auto-recovery <#> offline' is configured.

System Impact of Per-Slot Packet Memory Scanning

System impact depends on the command option selected (offline vs. online) and the modules in service.

Choosing **offline** causes failed modules to be removed from service. This action triggers recovery protocols both within the system housing the modules and within attached devices. If the disabled module is an MSM64i and is the master, the system will reboot, causing the slave MSM to assume the role of master MSM. If the MSM is an MSM3 and is the master, a failure causes a hitless failover to the slave MSM3. As a consequence, MSM-3 and redundant line modules are great candidates for the offline option.

Choosing **online** keeps the module in service no matter how many errors are detected, causing communication issues within the system, as well as affecting or corrupting traffic traversing the switch. You should take great care to ensure that a module in this state is identified and replaced as soon as possible.

Network Impact of Per-Slot Packet Memory Scanning

Keep in mind that the **offline** option specifies that a module is to be taken offline and kept offline when one of these conditions is true:

- More than eight defected are detected.
- Three consecutive checksum errors were detected by the system health checker, but no new defects were found by the memory scanning and mapping process.
- After defects were detected and mapped out, the same checksum errors are again detected by the system health checker.

Encountering one of these conditions might cause different reactions, depending on the type of module involved. Line modules will trigger applicable recovery mechanisms for all attached devices. MSM-64i
modules will trigger a reboot if the failed module is the master MSM. A failed MSM-64i in the slave slot is simply removed from service.

In general, network redundancy protocols will work to recover the network. The impact on the network depends on the network topology and configuration (for example, OSPF ECMP versus a large STP network on a single domain).

In an OSPF network, for example, after the shutdown/reboot is initiated, the adjacent OSPF routers will drop routes to the faltering switch. Very little traffic loss should occur during the network reconvergence, because traffic is simply routed around the affected switch via pre-learned routes. Because of this quick reconvergence factor, the reboot triggering a second reconvergence might be absorbed as long as small network outages are acceptable. If no amount of loss is acceptable, the shutdown option should be selected, so that a maintenance window can be scheduled to reinset the system.

As an example of impact in an STP network, the STP network will detect the outage and trigger a spanning tree reconvergence. The shutdown option keeps the system out of service, so no second reconvergence will occur, keeping service outages to a minimum. This redundancy protocol is designed to be slow and methodical to ensure that no loops exist in the network. While this protocol works very well, administrators might wish to reinset the system during a scheduled maintenance window. If the reboot option is selected, once the system has recovered, a second spanning tree reconvergence will be triggered and connectivity will be restored upon completion.
System (CPU and Backplane) Health Check

The purpose of the system health check feature is to ensure that communication between the CPU on the management switch module (MSM) and all I/O cards within the chassis is functioning properly.

NOTE

The system health check feature is supported only on “i” series Summit, Alpine, and BlackDiamond switches.

The system health checking cycle consists of two parts:

- CPU health check
- Backplane health check (BlackDiamond platform only)

These health checks detect data-path packet errors by automatically checking the end-to-end data path through the switch by periodically sending packets and then checking the integrity of those packets. They take automatic action when errors are found. All error messages are logged in the system log and can also be reviewed using the displayed output of CLI `show` commands. These health checks are enabled by default, run in the background, and are non-invasive.

Health Check Packet Types

The CPU health check has five types of diagnostic packets, each consisting of 1024 bytes. The CPU health check packets are generated by the CPU on the I/O slots and sent back to the CPU through the CPU packet path.

The backplane health check packet is a 384-byte packet generated by the CPU on the MSM and sent across the chassis backplane to each backplane link.

Backplane Health Check States

The system health check performs its diagnostic tasks according to the following states:

- **INITIALIZATION**—Health check functionality is initialized after the boot cycle is completed.
- **SEND**—The CPU sends 10 successive 384-byte packets to each backplane link on an I/O module in the chassis.
- **WAIT**—The CPU waits 5 seconds for each backplane diagnostic test and 3 seconds for each CPU diagnostic test before performing a check on the packets that were sent.
- **CHECK**—A packet integrity test is performed on all of the health check packets for an I/O module to determine whether each packet was successfully sent across the backplane without error or loss. If five health check packets are lost or errored, the sequence cycles back to the SEND state and begins again.

The health check feature is run three times on an I/O module. If the health check fails three times, the CPU generates a failure message.

- **SNC**—If all health check packets on an I/O module are received and pass the integrity check, the test sequence cycles back to the SEND state and begins on the next I/O module.
Related Commands

enable sys-health-check
disable sys-health-check
configure sys-health-check alarm-level [card-down | default | log | system-down | traps]
configure sys-health-check auto-recovery <number of tries> [offline | online] (BlackDiamond)
configure sys-health-check alarm-level auto-recovery [offline | online] (Alpine or Summit)

Health Check Functionality

The system health check feature can be configured to operate in one of two mutually-exclusive modes:

- alarm-level response action
- auto-recovery response action

The first mode—*alarm-level*—is a user-configurable log level; the second—*auto-recovery*—automatically attempts to diagnose the suspect module and restore it to operation. The choice between these two modes normally depends on the network topology, recovery mechanisms implemented, and acceptable service outage windows.

These modes are configured by two separate CLI commands, described below.

Alarm-Level Response Action

To configure the switch to respond to a failed health check based on alarm-level, use this command:

configure sys-health-check alarm-level [card-down | log | system-down | traps]

where:

- **card-down** (BlackDiamond only.) Posts a CRIT message to the log, sends an SNMP trap, and turns off the BlackDiamond module.
- **default** Resets the alarm level to log.
- **log** Posts a CRIT message to the local system log, NVRAM, and to a remote syslog (if configured).
- **system-down** Posts a CRIT message to the log, sends an SNMP trap, and powers the system down (reboots in limited function mode).
- **traps** Posts a CRIT message to the log and sends an SNMP trap to the configured trap receivers.

Auto-Recovery Response Action

The method for configuring auto-recovery response action depends on the switch platform (BlackDiamond vs. Alpine or Summit).

BlackDiamond Switches. To configure the switch to respond to a failed health check by attempting to perform auto-recovery (packet memory scanning and mapping), use this command:

configure sys-health-check auto-recovery <number of tries> [offline | online]
where:

- **number of tries**
 Specifies the number of times that the health checker attempts to auto-recover a faulty module. The range is from 0 to 255 times. The default is 3 times.

- **offline**
 Specifies that a faulty module is to be taken offline and kept offline if one of the following conditions is true:
 - More than eight defects are detected.
 - No new defects were found by the memory scanning and mapping process.
 - The same checksum errors are again detected by the system health checker.

- **online**
 Specifies that a faulty module is to be kept online, regardless of memory scanning or memory mapping errors.

Alpine or Summit “I” series Switches. To configure the switch to respond to a failed health check by attempting to perform auto-recovery (packet memory scanning and mapping), use this command:

```
configure sys-health-check alarm-level auto-recovery [offline | online]
```

When system health checks fail at a specified frequency, packet memory scanning and mapping is invoked automatically. Once auto-recovery mode is configured, an automated background polling task checks every 20 seconds to determine whether any fabric checksums have occurred. To invoke the automatic memory scanning feature, three consecutive samples for a module must be corrupted. When the automatic memory scanning feature has been invoked—regardless of platform type or number of errors, the device is taken offline for an initial period so that the memory scan can be performed.

Backplane Health Check

On BlackDiamond switches, the backplane health check routine in the system health checker tests the communication path between the CPU subsystem on the MSM and all I/O modules in the chassis for data-path packet errors. It does this by causing the CPU subsystem on the MSM to generate a backplane health check packet that is sent across the chassis backplane to each backplane I/O module link.

Viewing Backplane Health Check Results—show log Command

The backplane health check uses the same system log reporting mechanism as checksum validation, so you can use the `show log` command to view health check status information. Log messages take the following form (date, time, and severity level have been omitted to focus on the key information):

```
Sys-health-check [type] checksum error on <slot> prev= <0xm> cur= <0xn>
```

where **type** indicates the health check test packet type (INT, EXT, CPU), and **slot** indicates the probable location of the error, from among the following:

- **M-BRD**—The main board of a Summit system.
- **BPLANE**—The backplane of an Alpine system.
- **MSM-A, MSM-B, MSM-C, or MSM-D**—The MSM modules of a BlackDiamond system.
- **Slot n**—The slot number for an I/O module in a BlackDiamond system.

When you have observed log messages indicating missed or corrupted health check packets, use the `show diagnostics` command as the next source of information about health check failures.
NOTE

Frequent corrupted packets indicate a failure that you need to address immediately.

Missed packets are also a problem, but you should consider the total number of missed packets as only a general check of the health of the system. Small numbers (fewer than five) can generally be ignored, as they can be caused by conditions where the CPU becomes too busy to receive the transmitted packets properly, subsequently causing the missed packet count to increase.

Viewing Backplane Health Check Diagnostic Results—show diagnostics Command

The diagnostic results for the backplane health check are part of the output displayed by the `show diagnostics` command.
Backplane Health Check Diagnostic Results—Example 1.

Example 1 shows the report from one MSM, MSM-A in a BlackDiamond 6808 switch. If two MSMS are in the chassis, both MSM-A and MSM-B are reported.

<table>
<thead>
<tr>
<th>Port</th>
<th>Total Tx</th>
<th>Total Rx</th>
<th>Total miss</th>
<th>Error Pkt</th>
<th>Diag fail</th>
<th>Last fail time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where:

- **Total Tx** Lists the total number of health check packets transmitted by the CPU to an I/O module. The statistics for any I/O module will always be zero, because I/O modules do not generate health check packets (the switch sends health check packets from the MSM to the I/O modules only, not in the reverse direction).

- **Total Rx** Lists the total number of health check packets received on an I/O module and counted by the CPU. Again, this counter will always read zero for any I/O module.

- **Total miss** Lists the total number of missed health check packets for any I/O module. On the MSM, the number reflected is shown under the backplane port number corresponding to a given I/O module.

- **Error Pkt** Lists the total number of corrupted health check packets counted by the CPU on a given backplane port.

- **Diag fail** Lists the total number of diagnostic packets that failed from the I/O module to the CPU.

- **Last fail time** Lists the date and time of the previous corrupted or missed health check packet.
To clarify the relationship between MSM ports, the backplane links, and the I/O module slots shown in Example 1, consider the following annotated adaptation of the example’s output (not actual command output; for instructional purposes only):

<table>
<thead>
<tr>
<th>MSM Module</th>
<th>Port</th>
<th>Channel</th>
<th>Slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>(chan0, slot1)</td>
<td>6140</td>
<td>6140...</td>
</tr>
<tr>
<td>Port 2</td>
<td>(chan0, slot2)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 3</td>
<td>(chan0, slot3)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 4</td>
<td>(chan0, slot4)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 5</td>
<td>(chan0, slot5)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 6</td>
<td>(chan0, slot6)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 7</td>
<td>(chan0, slot7)</td>
<td>214020</td>
<td>214020...</td>
</tr>
<tr>
<td>Port 8</td>
<td>(chan0, slot8)</td>
<td>214010</td>
<td>214010...</td>
</tr>
<tr>
<td>Port 9</td>
<td>(chan1, slot1)</td>
<td>6140</td>
<td>6140...</td>
</tr>
<tr>
<td>Port 10</td>
<td>(chan1, slot2)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 11</td>
<td>(chan1, slot3)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 12</td>
<td>(chan1, slot4)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 13</td>
<td>(chan1, slot5)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 14</td>
<td>(chan1, slot6)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 15</td>
<td>(chan1, slot7)</td>
<td>214020</td>
<td>214020...</td>
</tr>
<tr>
<td>Port 16</td>
<td>(chan1, slot8)</td>
<td>214010</td>
<td>214010...</td>
</tr>
<tr>
<td>Port 17</td>
<td>(chan2, slot1)</td>
<td>6140</td>
<td>6140...</td>
</tr>
<tr>
<td>Port 18</td>
<td>(chan2, slot2)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 19</td>
<td>(chan2, slot3)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 20</td>
<td>(chan2, slot4)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 21</td>
<td>(chan2, slot5)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 22</td>
<td>(chan2, slot6)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 23</td>
<td>(chan2, slot7)</td>
<td>214020</td>
<td>214020...</td>
</tr>
<tr>
<td>Port 24</td>
<td>(chan2, slot8)</td>
<td>214010</td>
<td>214010...</td>
</tr>
<tr>
<td>Port 25</td>
<td>(chan3, slot1)</td>
<td>6140</td>
<td>6140...</td>
</tr>
<tr>
<td>Port 26</td>
<td>(chan3, slot2)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 27</td>
<td>(chan3, slot3)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 28</td>
<td>(chan3, slot4)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 29</td>
<td>(chan3, slot5)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 30</td>
<td>(chan3, slot6)</td>
<td>0</td>
<td>0...</td>
</tr>
<tr>
<td>Port 31</td>
<td>(chan3, slot7)</td>
<td>214020</td>
<td>214020...</td>
</tr>
<tr>
<td>Port 32</td>
<td>(chan3, slot8)</td>
<td>214010</td>
<td>214010...</td>
</tr>
</tbody>
</table>

The report in Example 1 shows 32 ports from the MSM switch fabric to the backplane; four channels; four MSM ports to each BlackDiamond 6808 I/O module slot.

In this example, chassis slots 1, 7, and 8 are populated with I/O modules capable of responding to the backplane health check packets from the system health checker. Tx and Rx packet values indicate the presence of a module, so—for example—MSM ports 1, 9, 17, and 25 are the MSM ports to I/O module slot 1, MSM ports 7, 15, 23, and 31 are the MSM ports to I/O module slot 7, and MSM ports 8, 16, 24, and 32 are the MSM ports to I/O module slot 8.

MSM ports 1 through 8 are the first channel (channel0) to each I/O module slot, MSM ports 9 through 16 are the second channel (channel1) to each I/O module slot, and so forth. In this example, no failures appear for any of these channels.

In this example, I/O module slot 1 has fewer reported diagnostics packets sent because it recently had extended diagnostics run against it, which reset the counter.
Backplane Health Check Diagnostic Results—Example 2. Example 2 shows a report for MSM-A again, but this time with missed and corrupted packets on different channels going to more than one I/O module slot.

In example 2, the missed packets and corrupted packets on channels going to more than one I/O module (slots 1, 4, and 7 in this example) indicate what is most likely a problem with MSM-A, itself.

<table>
<thead>
<tr>
<th>Port</th>
<th>Total Tx</th>
<th>Total Rv</th>
<th>Total miss</th>
<th>Error Pkt</th>
<th>Diag fail</th>
<th>Last fail time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6140</td>
<td>5939</td>
<td>201</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:46</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>4</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>38882</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>7</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>1288</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>8</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>9</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>15</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>16</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>17</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>23</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>24</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>25</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>31</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
<tr>
<td>32</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/08/2003 05:28:50</td>
</tr>
</tbody>
</table>
Backplane Health Check Diagnostic Results—Example 3. Example 3 shows a report for MSM-A again, but with missed and corrupted packets on channels going to the same slot.

In example 3, the corrupted packets on channels going to the same I/O module (slot 7 in this example) indicate what is most likely a problem with the I/O module in slot 7.

<table>
<thead>
<tr>
<th>Port</th>
<th>Total Tx</th>
<th>Total Rx</th>
<th>Total miss</th>
<th>Error Pkt</th>
<th>Diag fail</th>
<th>Last fail time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 7</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>1288</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>Port 8</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 9</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 15</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>38882</td>
<td>0</td>
<td>03/08/2005 05:28:50</td>
</tr>
<tr>
<td>Port 16</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 17</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 23</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>2982</td>
<td>0</td>
<td>03/08/2003 05:28:46</td>
</tr>
<tr>
<td>Port 24</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 25</td>
<td>6140</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 31</td>
<td>214020</td>
<td>214020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Port 32</td>
<td>214010</td>
<td>214010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Backplane Health Check Diagnostic Results—Example 4. Example 4 shows a report for MSM-A again, but with small numbers of missed packets on channels going to different slots.

In example 4, the small numbers of missed packets (fewer than five) indicate what is most likely not a serious hardware problem. Either the CPU was too busy during that period and missed a round of tests, or the hardware experienced an intermittent error. That the CPU is too busy to run the tests might indicate other network problems that might be investigated if the situation persists.

<table>
<thead>
<tr>
<th>Port</th>
<th>Total Tx</th>
<th>Total Rx</th>
<th>Total miss</th>
<th>Error Pkt</th>
<th>Diag fail</th>
<th>Last fail time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6140</td>
<td>6137</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>214020</td>
<td>214018</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>8</td>
<td>214010</td>
<td>214007</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>9</td>
<td>6140</td>
<td>6137</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>214020</td>
<td>214018</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>16</td>
<td>214010</td>
<td>214007</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>17</td>
<td>6140</td>
<td>6137</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>214020</td>
<td>214018</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>24</td>
<td>214010</td>
<td>214007</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>25</td>
<td>6140</td>
<td>6137</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>214020</td>
<td>214018</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
<tr>
<td>32</td>
<td>214010</td>
<td>214007</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03/08/2005 05:28:51</td>
</tr>
</tbody>
</table>

Analyzing the Results

- In the output of the `show diagnostics` command:
 - Small counts of missed packets might mean nothing more than that the CPU was busy and a packet was dropped; excessive numbers of missed packets indicate a systematic problem that must be isolated and resolved.
 - Corrupted packets might occur occasionally; excessive numbers of corrupted packets indicate a systematic problem that must be isolated and resolved.
- Backplane health check failures might indicate a faulty transceiver or MAC device on one of the MSMs or on an I/O module, but might also be the result of other problems.
• If a health check checksum error message appears in the log, and the output of the
 show diagnostics command shows excessive backplane health check error counts, you can usually
 use those two sources of information to determine the location of the problem.

• If backplane health check counts for missing or corrupted packets are increasing, but the log shows
 no checksum error messages, the problem is probably a low-risk, transient problem—possibly a busy
 CPU.

• If the log shows checksum error messages and the backplane health check counts for missing or
 corrupted packets are increasing:
 — Control data is probably being disrupted.
 — The combination of the channel/slot information for the health check counters in the output of
 the **show diagnostics** command and the checksum message information in the log can help
 isolate the faulty module.
 — Compare the backplane health check results to the results of the CPU health check. Because
 backplane health check packets are sent out across the backplane data bus, but read back across
 the same bus used by the CPU health check, packet errors might be occurring on the CPU control
 path (slow path). In that case, user traffic might be largely unaffected, but protocol-level traffic
 could be having problems.

• If the backplane health check shows no failures, but the log shows checksum error messages:
 — If the checksum error messages occur infrequently, it might indicate a packet memory problem
 that is being triggered sporadically; it might be a low-risk situation, but—if possible—you should
 run the packet memory scan.
 — If the checksum error messages occur frequently, user data is probably being affected; run the
 packet memory scan as soon as possible.

CPU Health Check

The CPU health check routine in the system health checker tests the communication path between the
CPU and all I/O modules. The CPU health check uses five types of diagnostic packet. Those packets are
generated by the CPU on the I/O slots and sent back to the CPU through the CPU packet path.

Viewing CPU Health Check Results— **show log Command**

The CPU health check uses the same system log reporting mechanism as checksum validation, so you
can use the **show log** command to view health check status information.

Log messages take the following form (date, time, and severity level have been omitted to focus on the
key information):

```
Sys-health-check [type] checksum error on <slot> prev= <0xm> cur= <0xn>
```

where **type** indicates the health check test packet type (INT, EXT, CPU), and **slot** indicates the probable
location of the error, from among the following:

- **M-BRD**—The main board of a Summit system.
- **BPLANE**—The backplane of an Alpine system.
- **MSM-A, MSM-B, MSM-C, or MSM-D**—The MSM modules of a BlackDiamond system.
- **Slot n**—The slot number for an I/O module in a BlackDiamond system.
Be aware that the slot information in the log message might be symptomatic of a problem occurring on another module in the system rather than on the indicated module.

When you have observed log messages indicating missed or corrupted health check packets, use the `show diagnostics` command as the next source of information about health check failures.

Viewing CPU Health Check Diagnostic Results—show diagnostics Command

The diagnostic results for the CPU health check are part of the output displayed by the `show diagnostics` command.

```
+-----------------+-----------------+-----------------+-----------------+------------------+
|      Slot       | Total Tx | Total Rx | Total miss | Error Pkt |
|-----------------+----------+----------+------------+-----------|
| Slot 1          | 5315     | 5315     | 0          | 0         |
| Type 0          | 5315     | 5315     | 0          | 0         |
| Type 1          | 5315     | 5315     | 0          | 0         |
| Type 2          | 5315     | 5315     | 0          | 0         |
| Type 3          | 5315     | 5315     | 0          | 0         |
| Type 4          | 5315     | 5315     | 0          | 0         |
| Slot 7          | 5315     | 5315     | 0          | 0         |
| Type 0          | 5315     | 5315     | 0          | 0         |
| Type 1          | 5315     | 5315     | 0          | 0         |
| Type 2          | 5315     | 5315     | 0          | 0         |
| Type 3          | 5315     | 5315     | 0          | 0         |
| Type 4          | 5315     | 5315     | 0          | 0         |
| Slot 8          | 5314     | 5314     | 0          | 0         |
| Type 0          | 5314     | 5314     | 0          | 0         |
| Type 1          | 5314     | 5314     | 0          | 0         |
| Type 2          | 5314     | 5314     | 0          | 0         |
| Type 3          | 5314     | 5314     | 0          | 0         |
| Type 4          | 5314     | 5314     | 0          | 0         |
```

For each slot, the CPU health check sends five different CPU health check test patterns (Type 0 through Type 4). Counts are maintained for transmitted, received, missed, and corrupted health check packets for each I/O module in the switch. As in the backplane health check, small numbers of missed health check packets are probably okay; large numbers of missed health check packets indicate a systematic problem, such as an MSM control bus transceiver problem or other serious problem. Small numbers of corrupted packets, appearing occasionally, are probably okay; large numbers of corrupted health check packets indicate a systematic problem, such as an MSM control bus transceiver problem or other serious problem.

Analyzing the CPU Health Check Results

- In the output of the `show diagnostics` command:
 - Small counts of missed packets might mean nothing more than that the CPU was busy and a packet was dropped; excessive numbers of missed packets indicate a systematic problem that must be isolated and resolved.
 - Corrupted packets might occur occasionally; excessive numbers of corrupted packets indicate a systematic problem that must be isolated and resolved.
• CPU health check failures might indicate a faulty transceiver on one of the MSMs, but might also indicate other I/O control bus failures. Always use log messages in conjunction with the output of the `show diagnostics` command.

• If a health check checksum error message appears in the log, and the output of the `show diagnostics` command shows excessive backplane health check error counts, you can usually use those two sources of information to determine the location of the problem.

• If backplane health check counts for missing or corrupted packets are increasing, but the log shows no checksum error messages, the problem is probably a low-risk, transient problem—possibly a busy CPU.

• If the log shows checksum error messages and the backplane health check counts for missing or corrupted packets are increasing:
 — Live data is probably being disrupted.
 — The combination of the health check counters in the output of the `show diagnostics` command and the checksum message information in the log can help isolate the faulty module.
 — Examine which modules are reporting CPU health check counters in the output of the `show diagnostics` command. If many modules are reporting errors, the MSM might be faulty; if only one module is reporting errors, the I/O module is probably faulty.

• If the backplane health check shows no failures, but the log shows checksum error messages:
 — If the checksum error messages occur infrequently, it might indicate a packet memory problem that is being triggered sporadically; it might be a low-risk situation, but—if possible—you should run the packet memory scan.
 — If the checksum error messages occur frequently, user data is probably being affected; run the packet memory scan as soon as possible.
Transceiver Diagnostics

The transceiver diagnostics test the integrity of the management bus transceivers used for communication between the ASICs in the Inferno chipset and the CPU subsystem. (See Figure 10.) These diagnostics write test patterns to specific ASIC registers, read the registers, then compare results, looking for errors in the communication path.

NOTE

The transceiver diagnostics are intended for modular “i” series switches only.

Usage Guidelines

These diagnostics were introduced with ExtremeWare Version 6.2.2b108. They operate as a non-invasive background process under the umbrella of the system health check, and are disabled by default.

These diagnostics offer configurable threshold and window values that trigger system health check actions when excessive hard failures are detected.

Related Commands

enable transceiver-test [all | slot <slot number> {backplane}] (Alpine)
enable transceiver-test [all | slot <slot number> | msm-a | msm-b] (BlackDiamond)
disable transceiver-test
clear transceiver-test
configure transceiver-test failure-action [log | sys-health-check]
configure transceiver-test period <1-60>
configure transceiver-test threshold <1-8>
configure transceiver-test window <1-8>
unconfigure transceiver-test failure-action
unconfigure transceiver-test period
unconfigure transceiver-test threshold
unconfigure transceiver-test window

These commands are described in the sections that follow. The default settings are: disabled, log, 1 second, 3 errors in 8 windows.

Configuring the Transceiver Diagnostics

• To enable or disable the transceiver diagnostics on an Alpine system, use this command:
 enable | disable transceiver-test [all | slot <slot number> {backplane}]]
• To enable or disable the transceiver diagnostics on a BlackDiamond system, use this command:
 enable | disable transceiver-test [all | slot <slot number> | msm-a | msm-b]
• To configure how often the transceiver diagnostic test is run, use this command:
 configure transceiver-test period <1-60>
 where period specifies the delay, in seconds, between iterations of the test. The delay period is a number in the range from 1 to 60 seconds. If you do not specify a value, the test uses the default of 1 second.
To configure the transceiver diagnostic threshold and window values, use these commands:

- To configure the number of 20-second periods (windows) within which the configured number of errors can occur, use this command:

```
configure transceiver-test window <1-8>
```

where `window` specifies the number of 20-second periods (windows) within which the configured number of errors can occur. The `window` value is a number in the range from 1 to 8. If you do not specify a value, the test uses the default of 8 windows.

NOTE

This configuration command provides a sliding observation window. For example, using the default window value of 8, the diagnostic checks for errors within the eight previous 20-second windows.

- To configure the number of transceiver test errors the system-health-check accepts before taking action, use this command:

```
configure transceiver-test threshold <1-8>
```

where `threshold` specifies the number of failures within the number of windows specified in the configure transceiver-test window command. The threshold value is a number in the range from 1 to 8. If you do not specify a value, the test uses the default of 3 errors.

NOTE

Extreme Networks recommends against changing the default transceiver test threshold value. The default value of 3 errors is adequate for most networks.

- To configure the action the system health check takes when too many transceiver test failures are detected within the specified transceiver test window, use this command:

```
configure transceiver-test failure-action [log | sys-health-check]
```

If you specify the `log` option, and no auto-recovery option was specified using the configure sys-health-check command, the response to transceiver diagnostic failures is to log one instance of the failure message.

If you specify the `sys-health-check` option, and an auto-recovery option was specified using the configure sys-health-check command, the response to transceiver diagnostic failures is to take whatever action the system health check is configured to perform.

System Impacts of the Transceiver Diagnostics

Because of the way the diagnostics operate, a negligible amount of system latency might occur. The frequency and number of test messages is extremely small in comparison to the capacity of the communication path being tested. Impact should only be experienced in switches with extremely high bandwidth use, in which case, the test frequency may be reduced. Threshold windows can also be configured to customize behavior to specific network environments.

Network Impact of the Transceiver Diagnostics

Impact on network traffic is negligible. There might be some impact if sys-health-check has been selected and the configured threshold for the transceiver test is exceeded. The impact depends on the way the system-health-check feature is configured.
Viewing Diagnostics Results

Use the following commands to view information related to the transceiver diagnostic test:

show log
show diagnostics
show switch

Example Log Messages for Transceiver Diagnostic Failures

- If the transceiver diagnostic test detects a failure, any of the following messages will appear in the log one time. To determine the severity of the problem, use the `show diagnostics` command to display diagnostics results and examine the transceiver diagnostic portion of the display.

 Transceiver ENET test failed on slot \textit{n}
 Transceiver NVRAM test failed on slot \textit{n}
 Transceiver FLASH test failed on slot \textit{n}
 Transceiver UART test failed on slot \textit{n}
 Transceiver SRAM test failed on slot \textit{n}
 Transceiver MAC test failed on slot \textit{n}
 Transceiver TWISTER test failed on slot \textit{n}
 Transceiver QUAKE test failed on slot \textit{n}

- The following log message indicates that a transceiver diagnostic test detected transceiver problems on multiple modules, possibly caused by a failure on the module in the slot specified as `slot \textit{n}`.

 Diags detected \textit{n} other i/o blade(s) with a transceiver problem. Problem may lie on slot \textit{n}

- The following message indicates that a transceiver diagnostic test failure has triggered the failure response action configured using the `configure sys-health-check` command.

 ... Sys-health-check [ACTION] (hardware failure) (hardware failure type) `slot \textit{n}`

Where `hardware failure type` can be any one of the following:

- `CARD_HWFAIL_ACL_TWISTER_TIMEOUT`
- `CARD_HWFAIL_PKTCACHEBUFFXFER_TWISTER_TIMEOUT`
- `CARD_HWFAIL_FDB_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_FDB_QUAKE1_TIMEOUT`
- `CARD_HWFAIL_FDB_COUNT_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_FDB_COUNT_QUAKE1_TIMEOUT`
- `CARD_HWFAIL_OT_RAM_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_OT_RAM_QUAKE1_TIMEOUT`
- `CARD_HWFAIL_QD_RAM_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_QD_RAM_QUAKE1_TIMEOUT`
- `CARD_HWFAIL_SCHED_RAM_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_SCHED_RAM_QUAKE1_TIMEOUT`
- `CARD_HWFAIL_AFC_STATUS_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_AFC_STATUS_QUAKE1_TIMEOUT`
- `CARD_HWFAIL_SW2CPU_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_CPU_CNTRL_QUAKE0_TIMEOUT`
- `CARD_HWFAIL_RR_DECODER_REG_TIMEOUT`
Examples, show diagnostics Command

This section provides two examples of the results from the `show diagnostics` command. The first is for a BlackDiamond system; the second is for an Alpine system.

Example—show diagnostics command (BlackDiamond System). The following example of the `show diagnostics` command displays the results of the transceiver diagnostics for a BlackDiamond system.

Transceiver system health diag result
Pass/Fail Counters are in HEX

<table>
<thead>
<tr>
<th>Slot</th>
<th>CardType</th>
<th>Cardstate</th>
<th>Test</th>
<th>Pass</th>
<th>Fail</th>
<th>Time_last_fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G8Xi</td>
<td>Operational</td>
<td>MAC</td>
<td>7613e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>G8Xi</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b09f</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>G8Xi</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b09f</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F48Ti</td>
<td>Operational</td>
<td>MAC</td>
<td>7613e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F48Ti</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b09f</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F48Ti</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b0a0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>UART</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>FLASH</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>SRAM</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>NVRAM</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>ENET</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>FABRIC</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>FABRIC</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-B</td>
<td>SLAVE</td>
<td>Operational</td>
<td>MAC</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-B</td>
<td>SLAVE</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-B</td>
<td>SLAVE</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Example—show diagnostics command (Alpine system). The following example of the show diagnostics command displays the results of the transceiver diagnostics for an Alpine system.

Transceiver system health diag result
Pass/Fail Counters are in HEX

<table>
<thead>
<tr>
<th>Slot</th>
<th>CardType</th>
<th>Cardstate</th>
<th>Test</th>
<th>Pass</th>
<th>Fail</th>
<th>Time_last_fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot 1</td>
<td>GM4X</td>
<td>Operational</td>
<td>MAC</td>
<td>443</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 2</td>
<td>FM32T</td>
<td>Operational</td>
<td>MAC</td>
<td>443</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 3</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 4</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPLNE</td>
<td>SMMI</td>
<td>Operational</td>
<td>UART</td>
<td>442</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BPLNE</td>
<td>SMMI</td>
<td>Operational</td>
<td>FLASH</td>
<td>442</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BPLNE</td>
<td>SMMI</td>
<td>Operational</td>
<td>SRAM</td>
<td>442</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BPLNE</td>
<td>SMMI</td>
<td>Operational</td>
<td>NVRAM</td>
<td>442</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BPLNE</td>
<td>SMMI</td>
<td>Operational</td>
<td>ENET</td>
<td>442</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BPLNE</td>
<td>Basbrd</td>
<td>Operational</td>
<td>QUAKE</td>
<td>442</td>
<td>0</td>
<td>01/31/2003 05:28:50</td>
</tr>
<tr>
<td>BPLNE</td>
<td>Basbrd</td>
<td>Operational</td>
<td>TWISTER</td>
<td>440</td>
<td>2</td>
<td>01/31/2003 05:28:50</td>
</tr>
</tbody>
</table>

Example—show diagnostics command (Alpine System). The following example of the show diagnostics command displays the results of the transceiver diagnostics for an Alpine system.

Transceiver system health diag result
Pass/Fail Counters are in HEX

<table>
<thead>
<tr>
<th>Slot</th>
<th>CardType</th>
<th>Cardstate</th>
<th>Test</th>
<th>Pass</th>
<th>Fail</th>
<th>Time_last_fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot 1</td>
<td>G8Xi</td>
<td>Operational</td>
<td>MAC</td>
<td>7613e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 1</td>
<td>G8Xi</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b09f</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 1</td>
<td>G8Xi</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b09f</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 2</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 3</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 4</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 5</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 6</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 7</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot 8</td>
<td>F48Ti</td>
<td>Operational</td>
<td>MAC</td>
<td>7613e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 8</td>
<td>F48Ti</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b09f</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slot 8</td>
<td>F48Ti</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b0a0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>UART</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>FLASH</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>SRAM</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>NVRAM</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>CPU</td>
<td>Operational</td>
<td>ENET</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>FABRIC</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-A</td>
<td>FABRIC</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-B</td>
<td>SLAVE</td>
<td>Operational</td>
<td>MAC</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-B</td>
<td>SLAVE</td>
<td>Operational</td>
<td>QUAKE</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MSM-B</td>
<td>SLAVE</td>
<td>Operational</td>
<td>TWISTER</td>
<td>3b0a7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Example—show switch Command

The following is a display example for the show switch command.

Sysname: BD6808
License: Full L3 + Security

SysHealth Check: Enabled. Alarm Level = Log
Recovery Mode: None
Transceiver Diag: Enabled. Failure action: sys-health-check
Fdb-Scan Diag: Enabled. Failure action: sys-health-check
System Watchdog: Enabled.

Transceiver Diagnostic Result Analysis

- If transceiver test error counters are incrementing, but there is no associated log message, the problem is probably a transient problem. You should continue to monitor the counter.

- If transceiver test error counters are incrementing and there is a log message, you should perform further analysis and diagnostics to isolate the problem.
Diagnostics

FDB Scan

The FDB scan diagnostic test addresses the possibility of hardware FDB memory issues where FDB hardware table entries do not match what was written to them by software.

The test is a non-invasive test that scans the entire FDB RAM memory pool on all switch fabrics, compares existing software table entries against what is in the hardware table, and reports or otherwise acts on any discrepancies it detects.

NOTE

The FDB scan diagnostic is supported only on “i” series Summit, Alpine, and BlackDiamond switches.

Usage Guidelines

The FDB scan diagnostic test can be run on demand by a user through the enable fdb-scan CLI command, or it can be configured to run as a background process in the system health checker.

You can scan the FDB on a stand-alone switch, or scan on a slot-by-slot or backplane basis on a modular switch. Using the enable fdb-scan command is independent of, and does not affect, the system health check configuration.

Depending on which version of ExtremeWare you are using, the FDB scan diagnostic is either enabled by default or disabled by default. For ExtremeWare 6.2.2b108, the default for the FDB scan is enabled. For ExtremeWare 6.2.2b134 or later, the default for the FDB scan diagnostic is disabled.

If you load your saved ExtremeWare 6.2.2b108 configurations on a switch with ExtremeWare 6.2.2b134 or later, the FDB scan diagnostic is enabled. If you want the FDB scanning feature disabled, you must manually disable FDB scanning.

To determine whether you have FDB scanning enabled and what failure action the switch will take in the event of an error, use the show switch command.

For empty memory locations, data is written to those sites and then read back, checking for consistent values. Inconsistency between writing and reading indicates a corrupt bit.

Used memory locations are compared against data stored in the software tables. If the comparison is inconsistent, the bit is deemed faulty. Upon detecting a faulty bit of memory, the test function maps out the bit so that it is not used in future forwarding decisions. Table entries that require extensive rebuilding are marked as suspect.

If you enable the FDB scan diagnostic and the system health checker, a section of the FDB memory on each module’s switching fabric undergoes a non-invasive check that compares it to the software copy of the FDB. If the diagnostic detects a suspect entry, the system health checker takes one of the following actions:

- If the suspect entry is not in use: Remap around it.
- If the suspect entry is in use, but can be removed safely (most MAC and IP-DA entries): Remove the suspect entry and allow the table to be rebuilt naturally.
- If the entry is in use and cannot be removed safely (MAC_NH, IPSA, IPMCDA, IPDP, IPSP, or IPXSN): Write a warning message to the log.
The failure action that the FDB scan test performs depends on the sys-health-check command configuration. The command configurations options available under the system health check are described in “Health Check Functionality” on page 71.

Related Commands

- enable fdb-scan [all | slot {{backplane} | <slot number> | msm-a | msm-b}]
- disable fdb-scan
- configure fdb-scan failure-action [log | sys-health-check]
- configure fdb-scan period <1-60>
- unconfigure fdb-scan failure-action
- unconfigure fdb-scan period

These commands are described in the sections that follow. The default settings are: disabled, log, 30 seconds.

Enabling FDB Scanning

You can scan the FDB on a stand-alone switch, on the backplane of a modular switch, or on a module in a slot of a modular switch.

To enable FDB scanning, use this command:

```
enable fdb-scan [all | slot {{backplane} | <slot number> | msm-a | msm-b}]
```

where:

```
all
```

Specifies all of the slots in the chassis. This option applies only on modular switches.

```
slot
```

Specifies a particular switch element to be tested. The possible choices are:

- `backplane`—Specifies the backplane of the chassis. This option applies only on Alpine switches.
- `<slot number>`—Specifies the slot number of the module to be scanned. This option applies only to BlackDiamond switches.
- `msm-x` — Specifies the MSM in slot x, where x is either A or B. This option applies only to BlackDiamond switches.

NOTE

This command and its settings are independent of, and in addition to the system health check configuration: the local settings do not affect the system health check configuration settings.

Disabling FDB Scanning

To disable FDB scanning, use this command:

```
disable fdb-scan [all | slot {{backplane} | <slot number> | msm-a | msm-b}]
```

NOTE

If you disable FDB scanning for a slot and the system health check is enabled, the slot is still scanned by the system health checker.
Configuring the FDB Scan Diagnostics

- To set the interval between FDB scans, use the following command:

  ```bash
configure fdb-scan period <1-60>
  ```

 The interval is a number in the range from 1 to 60 seconds. The default is 30 seconds. We recommend a period of at least 15 seconds. If you attempt to configure a period of fewer than 15 seconds, the system displays the following warning message:

 Setting period below (15) may starve other tasks.

 Do you wish to do this? (yes, no, cancel) 06/19/2003 10:29:28 <INFO:SYST> serial admin: configure fdb-scan period 1

 Enter a “y” to proceed with the change; enter an “n” to reject the change.

- To configure the action taken when too many FDB scan test failures are detected within the specified FDB scan period, use this command:

  ```bash
  configure fdb-scan failure-action [log | sys-health-check]
  ```

 If you specify the log option, or no auto-recovery option was specified using the configure sys-health-check command, the response to FDB scan failures is to log one instance of the failure message. The default is log.

 If you specify the sys-health-check option, and an auto-recovery option was specified using the configure sys-health-check command, the response to too many FDB scan failures is to take whatever action the system health check is configured to perform.

- To configure the options for the FDB error checking function, use this command:

  ```bash
  run fdb-check [all | index <bucket> <entry> | [<mac_address> | broadcast-mac] 
  [vlan name>] {extended} {detail}
  ```

System Impact of the FDB Scan Diagnostic

Using the default values (disabled, log, 30 seconds), the FDB Scan is a non-invasive test. But if the scan interval is configured to less than 12 seconds, system performance might be affected, because system processes might be starved.

NOTE

Generally, at the default 30 second FDB Scan period, it will take 30*128 seconds to scan the entire FDB memory. Of course, for lower FDB memory locations, detection will occur earlier in the 30*128 second window. At an FDB Scan period of one second, it will take 128 seconds to scan through the entire FDB memory, but it will consume more than 50% of CPU use during those 128 seconds.

Network Impact of the FDB Scan Diagnostic

Impact on network traffic is negligible. There might be some impact if the system health check feature has been selected and the configured FDB Scan threshold is exceeded. The impact depends on the way the system health check feature is configured.
Viewing Diagnostics Results

Use the following commands to view information related to the FDB Scan diagnostic test:

```
show log
show diagnostics
show fdb remap
clear fdb remap
show switch
```

Example Log Messages for FDB Scan Diagnostic Failures

Look for the following types of messages in the log:

FDB Scan: max number of remaps (num***) exceeded. Calling sys-health-check. **slot entry**

This message indicates that the FDB scan cannot re-map any more FDB entries. The value **num** is the maximum number of entries than can be remapped (should be 8), **slot** indicates the chassis slot, and **entry** indicates the entry. The system health check is invoked; the configured system health check action will be taken.

If this error message appears many times on multiple slots, there might be a transceiver problem on the master MSM. Run the transceiver diagnostics and check the results to determine whether the MSM should be replaced.

FDB Scan: entry **entry marked ‘remapped’**

This message indicates that the diagnostic detected a corrupted portion of FDB memory, and that the database entry **entry** was marked as unusable by the FDB scan routine. The module can continue to operate normally with no loss of performance. Do not replace the module.

FDB Scan: entry **entry marked ‘suspect’**

This message indicates that the diagnostic detected a corrupted portion of FDB memory, but could not remap that memory portion because it contains an entry that cannot be removed and relearned automatically (for example, a static database entry). Operator intervention is required to correct this problem. Use the **show fdb remap** command to identify the suspect entry (suspect entries are marked with an “S,” remapped entries are marked with an “R”) and then take the appropriate action to resolve the problem.

Example FDB Scan Results from the **show diagnostics** Command

```
FDB Scan results  
Cardstate  NumFail  NumScan  Entry  LastFailTime  
slot 1 : Operational   0   62  
slot 2 : Unknown  
slot 3 : Unknown  
slot 4 : Unknown  
slot 5 : Unknown  
slot 6 : Unknown  
slot 7 : Operational   0   62  
slot 8 : Operational   0   62  
MSM-A : Operational   0   62  
MSM-B : Operational   0   62
```
In the example output of the `show diagnostics` command, in those slots equipped with a module, a non-zero value in the “NumFail” column indicates that a problem has been detected with FDB memory. During the FDB scan, the test attempts to map an error location so that it will not be used. If that location is in use, and the entry cannot be removed safely, FDB scan marks it as suspect (see the description of the example log messages in “Example Log Messages for FDB Scan Diagnostic Failures” on page 91, and the `show fdb remap` command, below). If entries are marked “suspect,” then traffic might be forwarded incorrectly for that specific entry (all other entries will be okay). Manually remove the entry and allow FDB scan to remap it. If this is not possible, contact Extreme Network TAC.

Example Output from the show switch command

For an example of the `show switch` command display, see the “Example—show switch Command” section on page 86. The output from this command will indicate whether FDB scanning is enabled and will also indicate the failure action to be taken.

Example Output from the show fdb remap Command

Forwarding database remapped entries:

```
80fc0-206 FF:FF:FF:FF:FF:FF    v1(4093)   0000 0000  Ss m  CPU
80fc1-fff 00:E0:2B:FF:FF:FF   (0000)  0000 0000  RS m  ---
80fc2-fff 00:E0:2B:FF:FF:FF   (0000)  0000 0000  RS m  ---
80fc3-fff 00:E0:2B:FF:FF:FF   (0000)  0000 0000  RS m  ---
```

Flags: d - Dynamic, s - Static, p - Permanent, m - Mac, i - IP, x - IPX, l - lockdown MAC, M - Mirror, B - Egress Blackhole, b - Ingress Blackhole, S - Suspect, R - Remapped.

SW-202:24 #
This chapter describes additional diagnostic tools to detect and help resolve system problems.

This chapter contains the following sections:

- Temperature Logging for Modular Switches on page 93
- Syslog Servers on page 94
- Cable Diagnostics on page 96

Temperature Logging for Modular Switches

One of the leading causes of early failure in all electrical equipment is excessive heat. To achieve maximum service life for equipment, adhere to the recommended environmental requirements for the equipment. The ExtremeWare temperature-logging feature for modular switches aids in maintaining optimum operating conditions by reporting the internal operating temperature (celsius) of a switch once an hour to both the internal system log and to a syslog server, if configured.

The recommended ambient operating temperature for Extreme Networks switches is 32° to 104° F (0° to 40° C), but this range represents the absolute limits of the equipment. Whenever possible, the temperature should be kept at approximately 78° F (25° C). Operating humidity should be kept between 10 and 95% relative humidity. For more information, refer to the Consolidated Hardware Installation Guide.

NOTE

Inadequate cooling airflow through the chassis causes excessive internal heat. Maintain at least 3 inches (76 mm) in front of all air intake and exhaust vents. The recommended clearance is 5 inches (127 mm). Empty slots must be covered with blank panels to preserve air flow within the chassis.

Related Commands

enable temperature-logging
disable temperature-logging
show log
clear log

The temperature logging feature is disabled by default.
System Impacts of Temperature Logging

The temperature logging feature does not impact the performance of the system, but temperature logging causes one log entry during every hour of switch operation. To prevent the loss of important log messages, Extreme Networks recommends the use of an external syslog server. For more information about the use of an external syslog server, refer to “Syslog Servers” on page 94.

Network Impact of Temperature Logging

There is no network impact due to temperature logging, because it is an internal log message option of the switch.

Syslog Servers

Log information is critical not only to troubleshoot a failed system, but also to identify contributing conditions that might lead to future failures. One major problem with internal switch logs is that only a limited amount of memory can be allocated for logs. After 1,000 messages, the log wraps and the first messages are lost. Normally, this is not an issue, but in case of failure, a failure might be recorded in the log, but lost because subsequent messages cause the earlier, true cause of the failure to be purged.

Another important fact to consider when designing for effective recovery is that network device logs might be lost after a catastrophic failure.

Syslog servers are an effective and inexpensive way to address both of the internal log capacity limitation and the risk of loss in a catastrophic failure. Syslog servers receive and store log messages from network devices. With the use of syslog servers, information remains intact after failure and no buffer threshold will be reached, allowing administrators or Extreme Networks TAC representatives to identify the triggering event in a failure. Syslog servers also offer the added advantage of integrated tools to store, sort, scan, and issue alerts on configured error conditions. This capability enables greater control of the networking environment, especially when planning for effective recovery.

Related Commands

```
enable syslog
disable syslog
configure syslog {add} <host name/ip> {: <udp-port>} [local0 ... local7] {<severity>}
configure syslog delete <host name/ip> {: <udp-port>} [local0 ... local7]
```

Enabling Logging to Remote Syslog Server Targets

To enable logging to a remote syslog server, use this command:

```
enable syslog
```

NOTE

The enable syslog command must be issued in order for messages to be sent to the configured remote syslog server(s). Syslog is disabled by default.
Disabling Logging to Remote Syslog Server Targets

To disable logging to all remote syslog server targets, use this command:

disable syslog

NOTE

This command disables logging to all remote syslog server targets, not to the switch targets. This setting is saved in FLASH and will be in effect upon boot up.

Adding a Syslog Server

A total of four syslog servers can be configured at one time.

To configure the remote syslog server, use this command:

configure syslog {add} <host name/ip> {(: <udp-port>)} [local0 ... local7] {<severity>}

where:

- **host name/ip** Specifies the host name of the remote syslog server. This option is valid only when a domain name server has been configured.
- **ip** Specifies the IP address of the remote syslog server.
- **udp-port** Specifies the UDP port number for the syslog target. If a UDP port number is not specified, the default port number 514 is used.
- **local0 ... local7** Specifies the syslog facility level for local use (local0 through local7). This option is used to group syslog data.
- **severity** Specifies a filter level to be applied to messages sent to the remote syslog server. Messages having the specified severity level or higher (more critical) are sent to the remote syslog server. Severity levels are: critical, error, warning, notice, info, debug-summary, debug-verbose, and debug-data. If no severity level is specified, all messages are sent to the remote syslog server target.

NOTE

When a remote syslog server is added, it is associated with the filter DefaultFilter. Use the configure log target filter command to associate a different filter.

Deleting a Remote Syslog Server

To delete a remote syslog server target, use this command:

configure syslog delete <host name/ip> {(: <udp-port>)} [local0 ... local7]

System Impact of the Syslog Server Facility

The syslog server facility has no impact on the performance of the system. All log messages that are written to the local log of the system are simply copied to the configured syslog server.
Network Impact of the Syslog Server Facility

Network impact depends on the volume of log messages sent to the syslog server. But even under extreme conditions, the relative brevity of log messages means that even a very large message volume should not adversely affect network throughput.

Cable Diagnostics

The cable diagnostics provided in ExtremeWare are to assist in detecting severe cable problems including, but not limited to, the following:

- A cable not properly terminated at the link partner
- An open circuit and the distance to the point where the open circuit occurs
- A short circuit between the conductors in a single twisted-pair and the distance to the point where the short circuit occurs

Cable Diagnostics for the High-Density Gigabit Ethernet I/O Modules in “i” Series Switches

ExtremeWare provides a set of cable diagnostics, referred to as the Cable Diagnostics Module or CDM, to test cables attached to the physical ports on the High-Density Gigabit Ethernet modules (also known as “3” series I/O modules) in the Alpine 3800 series and the BlackDiamond 6800 series chassis-based systems.

The CDM tests can be run on any cable connected to a port on a High-Density Gigabit Ethernet module. The cable can be open at the far end, or it can be plugged into a port on the far-end device acting as the link partner.

Depending on the status of the cable and its connections, the CDM tests proceed this way:

- When the Gigabit link cannot be established, the CDM tests use time domain reflectometry (TDR) to diagnose cable faults. The results of the diagnostic test are then interpreted to determine the type of cable fault and—when applicable—the approximate distance to the cable fault.
- When the Gigabit link can be established, the CDM tests report additional status information on pair skew, pair swap, polarity swap, and approximate cable length.

Related Commands

run diagnostics cable port [<portlist> | all]
abort diagnostics cable
configure diagnostics cable time <time> {reset-port-on-failure [enable | disable]}
enable diagnostics cable port [<portlist> | all]
disable diagnostics cable port [<portlist> | all]
show diagnostics cable {ports {<portlist> | all}} {mode {auto | manual | both}} {detail}

NOTE

These commands apply only to the High-Density Gigabit Ethernet modules (also known as “3” series I/O modules) in the Alpine 3800 series and the BlackDiamond 6800 series chassis-based systems.
Running Cable Diagnostics

You can run the CDM tests manually at any time, or you can schedule them to be run automatically.

Running CDM Tests Manually. To run the tests manually, use this command:

```
run diagnostics cable port [<portlist> | all]
```

This command initiates the CDM to obtain cable diagnostics values for the specified physical ports of the system.

NOTE

Running the cable diagnostics takes the link down, disrupting any network traffic on the specified port and its link.

To stop a CDM run that is currently in progress, use this command:

```
abort diagnostics cable
```

Running CDM Tests Automatically. To run the CDM tests automatically, perform these steps:

1. First, create a template for auto diagnostics that specifies two parameters:
 - Start time for the cable diagnostics
 - Whether a port is to be restarted if the diagnostics run results in a failure for a particular port

 To create the auto diagnostics template, use this command:

   ```
   configure diagnostics cable time <time> {reset-port-on-failure [enable | disable]}
   ```

 where `time` is the time at which the diagnostics must be started, specified in the form `hh:mm:ss`.

 NOTE

 If you specify reset-port-on-failure and set it to disable, and the diagnostics fail for a port, the port, which is disabled prior to running the diagnostics, will remain disabled and the status LED corresponding to the failed port will blink continuously. If you do not explicitly enable such ports, the status LED corresponding to the failed port will continue to blink.

2. Next, enable auto diagnostics for specific ports by using this command:

   ```
   enable diagnostics cable port [<portlist> | all]
   ```

 NOTE

 Running the cable diagnostics automatically takes the link down, disrupting any network traffic on the specified port and its link.

 To disable the automatic running of cable diagnostics for selected physical ports of the system, use this command:

   ```
   disable diagnostics cable port [<portlist> | all]
   ```
The disable diagnostics cable command also purges the cable diagnostics values for the selected ports from the CDM data structures.

Viewing and Interpreting CDM Test Data

To display CDM test information currently stored in the CDM data structures, use this command:

```bash
show diagnostics cable {ports {<portlist> | all}} {mode {auto | manual | both}} {detail}
```

The `show diagnostics cable` command displays or prints the following cable diagnostics data for each specified port:

- Time and date of test
- Port identity
- Speed (Mbps)
- Cable length (meters)
- Cable pair (subcategory information for each of the four pairs)
- Fault location (if any, as a distance, in meters)
- Pair skew (ns)
- Pair polarity
- Cable status
- Pair swap
- Diagnostic mode

NOTE

You can specify that cable diagnostics data should be displayed for either the latest automatic diagnostics run, the latest manual diagnostics run, or both.

The following command displays cable diagnostics information in detail format for ports 1 through 3 on slot 6:

```bash
show diagnostics cable ports 6:1-6:3 detail
```
Following is sample detailed diagnostic output from this command:

```
Manual Diagnostics Collected @ Thu Jan 29 02:48:29 2004
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Speed</th>
<th>Avg Len</th>
<th>Pair</th>
<th>Fault Loc</th>
<th>Skew</th>
<th>Polarity</th>
<th>Cable Status</th>
<th>Pair-Swap</th>
<th>Diagnostic Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:1</td>
<td>1000</td>
<td>10</td>
<td>1-2</td>
<td>No Fault</td>
<td>8 ns</td>
<td>Unknown</td>
<td>Ok</td>
<td>No-Swap</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-6</td>
<td>No Fault</td>
<td>0 ns</td>
<td>Unknown</td>
<td>Ok</td>
<td>Unknown</td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-5</td>
<td>No Fault</td>
<td>8 ns</td>
<td>Unknown</td>
<td>Ok</td>
<td>Unknown</td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-8</td>
<td>No Fault</td>
<td>8 ns</td>
<td>Unknown</td>
<td>Ok</td>
<td>Unknown</td>
<td>Manual</td>
</tr>
</tbody>
</table>

The following command displays cable diagnostics information in summary format for port 1 on slot 6:

```
show diagnostics cable ports 6:1
```

The following is a sample summary diagnostic output from this command:

```
Manual Diagnostics Collected @ Fri Jan 16 03:41:54 2004
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Speed</th>
<th>Pair</th>
<th>Cable Status</th>
<th>Diagnostic Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:1</td>
<td>1000</td>
<td>1-2</td>
<td>Ok</td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-6</td>
<td>Ok</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-5</td>
<td>Ok</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-8</td>
<td>Ok</td>
<td></td>
</tr>
</tbody>
</table>

Cable Length Information. The reported cable length information is a function of the physical makeup of the cable itself, and the accuracy of the technology and calculation methodology used to estimate cable length.

A cable is made up of one or more pairs of separately insulated conductors or lines. Each conductor pair is twisted at a different rate to minimize electromagnetic interference (EMI). This difference in twist rates results in a difference in the actual length of each conductor pair: a 100-meter CAT5 cable—for example—might contain a twisted pair whose actual length might be as long as 103 meters, while another might have an actual length as short as 99 meters.

Estimating cable length is usually based on a default value for the speed of wave propagation in a cable, and any error in this default value translates directly into an error in the estimation of cable length.
length. For example, a 2% error in the default value of the speed of wave propagation results in a two-meter error for a 100-meter cable.

Cable Pair Information. Twisted pair conductors in the RJ-45 Ethernet cable are connected to pins of the PHY in the following pairings: 1-2, 3-6, 4-5, and 7-8. In a straight-through (MDI) cable, these conductor pairings are associated with channel designators (A, B, C, and D), which refer to the roles that the MDI pairs might assume under the IEEE definition.

Table 9 lists the logical channel assignments for straight-through (MDI) and crossover (MDI-X) cable types as defined by IEEE 802.3 clause 40.8.

Table 9: IEEE 802.3 Cable Mapping

<table>
<thead>
<tr>
<th>Contact</th>
<th>MDI</th>
<th>MDI-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BI_DA+</td>
<td>BI_DB+</td>
</tr>
<tr>
<td>2</td>
<td>BI_DA−</td>
<td>BI_DB−</td>
</tr>
<tr>
<td>3</td>
<td>BI_DB+</td>
<td>BI_DA+</td>
</tr>
<tr>
<td>4</td>
<td>BI_DC+</td>
<td>BI_DD+</td>
</tr>
<tr>
<td>5</td>
<td>BI_DC−</td>
<td>BI_DD−</td>
</tr>
<tr>
<td>6</td>
<td>BI_DB−</td>
<td>BI_DA−</td>
</tr>
<tr>
<td>7</td>
<td>BI_DD+</td>
<td>BI_DC+</td>
</tr>
<tr>
<td>8</td>
<td>BI_DD−</td>
<td>BI_DC−</td>
</tr>
</tbody>
</table>

Cable Fault Information (no Gigabit link established). When the Gigabit link cannot be established, the CDM tests use time domain reflectometry (TDR) to diagnose cable faults. The results of the diagnostic test are then interpreted to determine the type of cable fault (described below) and—when applicable—the approximate distance to the cable fault.

- **Short**—If the positive and negative conductors of the same cable pair make an electrical contact, the cable diagnostic reports that condition as a short on that pair. The possible causes are:
 - The cable pair conductors might be shorted if they are both touching metal in a wiring closet patch panel.
 - Within the cable, the insulation on cable pair conductors might be worn from constant flexing and fail, allowing the conductors to make electrical contact.
- **Open**—If one or both of the conductors in a cable pair are severed, the cable diagnostic reports that condition as an open on that cable pair. The possible causes are:
 - The conductors of this cable pair might have been left unconnected at the wiring closet patch panel.
 - The conductors of this cable pair might have been severed within the cable.
 - The far end of the cable is not connected.
- **Impedance mismatch (impedance error)**—When the effective impedance on a cable pair is not 100 Ohms, the cable diagnostic reports that condition as an impedance mismatch. The possible causes are:
 - Different quality cables—for example, a 100-Ohm segment and a 120-Ohm segment—are joined through a cable extender.
 - A cable of unsatisfactory quality is used.
Extended Cable Status Information (Gigabit link established). When the Gigabit link can be established, the CDM tests report additional status information on approximate cable length, pair skew, polarity swap, and pair swap.

- **Cable length**—After link, the cable diagnostics use a non-TDR method to determine and report the approximate cable length between the near-end port and its far-end link partner.

- **Pair skew**—The cable diagnostics can detect skew among the four pairs of the cable that connects the near-end port to its far-end link partner. Three of the four pairs report their delay skew with respect to the fastest pair in increments of 8 nanosecond (ns).

- **Polarity swap**—The cable diagnostics can detect and report when any of the cable pairs connected to the PHY was inverted.

- **Pair swap**—The cable diagnostics can detect when the auto-crossover capability of the port’s PHY has adjusted the role of its MDI pairs in the process of establishing link to its link partner. The cable diagnostics report the channels associated with the MDI pairs.

Cable Diagnostics for “e” Series Switches

If you are having a problem establishing a link, you might have a faulty Ethernet cable. An Ethernet cable is composed of four pairs of unshielded twisted-pair (UTP) conductors. Of those four pairs, two pairs are required to create the link. In addition to checking the cable visually, you can also run a CLI command to test the cable.

To test an Ethernet cable connected to an “e” series switch, use this command:

```
run diagnostics cable ports <portlist>
```

This command tests each of the four unshielded twisted pair (UTP) wire pairs. When the test ends, it displays a message prompting you to enter the `show ports cable diagnostics` command to display the cable diagnostic test results.

To display the output of the cable diagnostic test on an “e” series switch, use this command:

```
show ports <portlist> cable diagnostics
```
When a problem arises in the network, you should gather consistent information and deliver that information to Extreme Networks for ongoing historical issue tracking and trend analysis. This chapter describes the kinds of information you should collect and the general analytical processes you should follow.

This chapter contains the following sections:

- Contacting Extreme Technical Support on page 103
- What Information Should You Collect? on page 105
- Analyzing Data on page 105
- Diagnostic Troubleshooting on page 106
- Extreme Networks' Recommendations on page 107
- Using Memory Scanning to Screen I/O Modules on page 109

Contacting Extreme Technical Support

The Extreme Networks Global Technical Assistance Centers (TACs) are the focal point of contact for post-sales technical and network-related questions or issues. Extreme Networks maintains several TACs around the world. If you have a network issue that you are unable to resolve, contact the nearest Extreme Networks TAC. The TAC will create a service request (SR) and manage all aspects of the service request until the question or issue that spawned the service request is resolved.

Americas TAC

Covers Canada, the United States, and Latin America
Located in Santa Clara, CA USA
Toll free telephone: 1-800-998-2408
Direct telephone: 408-579-2826
E-mail: support@extremenetworks.com
Web site: http://www.extremenetworks.com/support/techsupport.asp/
Office hours: Monday–Sunday, 6 A.M.–4 P.M., Pacific Standard Time
Asia TAC

Asia Pacific Rim, except Japan
Located in Santa Clara, CA USA
Toll free telephone: 1-800-998-2408
Direct telephone: 408-579-2826
E-mail: support@extremenetworks.com
Web site: http://www.extremenetworks.com/support.techsupport.asp/
Office hours: Monday–Sunday, 3 P.M.–12 A.M., Pacific Standard Time

EMEA TAC

Located in Utrecht, Netherlands
Direct telephone: +31-30-800-5000
E-mail: support@extremenetworks.com
Web site: http://www.extremenetworks.com/support.techsupport.asp/
Office hours: Monday–Sunday, 8 A.M.–5 P.M., Central European Time

Japan TAC

Located in Tokyo, Japan
Regional Support: Japan only
Direct telephone: +81-3-5842-4020
Fax: +81-3-5842-4021
E-mail: support-j@extremenetworks.com
Web site: http://www.extremenetworks.com/support.techsupport.asp/
Office hours: Monday–Friday, 9 A.M.–6 P.M.

NOTE

The Extreme Networks TAC provides 24x7x365 service. Call received outside the normal business hours by the Americas, Asia Pacific Rim, and EMEA TACs are forwarded to the TAC that is available at that moment.

There are a variety of conditions under which customers and partners are entitled to use the TAC. If you have questions about what you can expect of TAC services, please do one of the following:

- EMEA end users—Please contact your Extreme Networks supplier for an ExtremeWorks proposal, or contact your Extreme Networks sales representative.
- Americas, Japan, and Asia-Pacific Rim—Please send an e-mail to servicesales@extremenetworks.com. A service representative will respond to you within one business day.

For a detailed description of the Extreme Networks TAC program and its procedures, including service request information requirements and return materials authorization (RMA) information requirements, please refer to the Extreme Networks What You Need to Know TAC User Guide at this Web location:

 http://www.extremenetworks.com/services/wwtac/TacUserGuide.asp
What Information Should You Collect?

- Mandatory technical information:
 - Before reboot, use the `show tech` CLI command to collect system information.
 - System log (switch log—volatile, NVRAM; external log—complete remote SYSLOG file for the day of the event)
 - Topology diagram

- Background information:
 - Any recent hardware or configuration changes
 - Detailed description of all the known symptoms
 - Was there a service impact?
 - Define the scope of the service impact (For example: Only one user? All users on one BlackDiamond system? All users in the IDC? Multiple switches? Random or pattern? Which modules? Which ports? Etc.)
 - If the problem was resolved, what steps did you take to diagnose and resolve the problem?

- Optional information (upon request from Extreme Networks TAC personnel)
 - System dump (CPU memory dump)

- Additional CLI commands for information include:
 - `show diagnostics`
 - `show log` (do the complete log, rather than just part of the log)
 - `show configuration`
 - `show switch`
 - `show version`

Analyzing Data

- Check the log and the output from the `show diags` command to determine whether a hardware fault was indicated.

- If a hardware fault is indicated:
 - Determine whether a module was taken off line. If “yes,” it should be obvious which module must be replaced.
 - If not, refer to the “Diagnostic Troubleshooting” section (below).

- If the module can be identified clearly from the diagnostic messages, and the outage was service-affecting, replace the faulty module.

- If the module cannot be identified clearly from the diagnostic messages, contact TAC for further troubleshooting.
Diagnostic Troubleshooting

For “i” series switches, observe the following troubleshooting guidelines:

- If there are no checksum errors appearing in the system log, but the health check counts for missing or corrupted packets are increasing, it is probably a transient problem, of low risk (possibly a busy CPU).

- If the log shows checksum error messages, and the system health check counters for missing or corrupted packets are increasing:
 - Live data is being probably being disrupted.
 - The combination of the health check counters in the output of the `show diagnostics` command and the checksum messages in the log can help isolate the faulty module.
 - Compare with CPU health check information from `show diagnostics` command; the packet error might be occurring on the CPU data path and not on the backplane (in which case user traffic would be largely unaffected, but protocol traffic could be having problems).
 - If errors are frequent, user data is probably affected; run the packet memory scan as soon as possible.

- If system health check shows no failures, but the log shows checksum errors:
 - If the checksum errors occur infrequently, it might indicate a packet memory problem that is being triggered sporadically; it might be a low-risk situation, but—if possible—you should run the packet memory scan.
 - If the checksum errors occur frequently, user data is probably being affected; run the packet memory scan as soon as possible.

- In the output from the `show diagnostics` command, if FDB scan error counters are non-zero, it indicates that a problem has been detected with FDB memory. FDB scan attempts to map the error location so that it will not be used. If the location is in use and the entry cannot be safely removed, FDB scan will mark it as suspect (suspect entries are marked with an “S”). Look at the output of the `show fdb remap` command. Address suspect entries by manually removing the entries and re-adding them. Consult Extreme Networks TAC if this is not possible.

- In the output from the `show diagnostics` command, if transceiver test error counters are incrementing, it might indicate a transceiver problem.
 - If there is no associated log message, then the problem is probably a transient problem and requires no action.
 - If there is a log message, then there is most likely an issue that needs to be addressed. Use the log message and the output of the `show diagnostic` command to isolate the problem.
Extreme Networks’ Recommendations

Extreme Networks strongly recommends that you observe the process shown in Figure 11 and outlined in the steps that follow when dealing with checksum errors.

Figure 11: Diagnostic Troubleshooting Process

1. Is the checksum error a hard error?

The first occurrence of a checksum error doesn’t determine whether the error is a hard error or a soft error. If the error is persistent (doesn’t disappear after a reboot) and is accompanied by continuous and consistent checksum error messages in the system log, it might be a temporary hard error. If any hardware has been changed recently, and this switch is a modular chassis, try reseating the affected blade.
2 Did the problem go away?
 If it did, monitor the operation of the switch, but no immediate action is required.
 If it did not disappear, it is probably a permanent hard error, is service-affecting, and must be dealt with immediately by running the ExtremeWare extended diagnostics (including the packet memory scan).

3 Because the extended diagnostics require down time, schedule an appropriate maintenance window to minimize the impact on the rest of the network.

4 If the switch is not currently running the latest version of ExtremeWare software, the switch software should be upgraded to gain availability to the latest ExtremeWare diagnostics.

5 Isolate the target switches, either physically or logically, from the network while the diagnostics are being run because of the high CPU utilization of the diagnostics. Isolating the core switches ensures that various network features converge properly.

6 Run the extended diagnostics in manual mode (which automatically invokes the packet memory scan).
 In addition to the extended diagnostics, you should also run the transceiver diagnostics and FDB scan diagnostics within this same maintenance window, because run together these tests can detect not only problems with the packet memory, but also any other problems within the system.
 If possible, perform memory scanning while actual fabric checksums are being reported in the log. Although this is not an absolute requirement (and is—in fact—not a factor in the actual memory scan), by executing manual memory scanning while there are checksum errors occurring provides the best correlation between this diagnostic and the actual event.

 NOTE
 For fully-redundant systems (for example, when ESRP has been enabled), the system health checker can be run in automatic (auto-recovery) mode.

Did the extended diagnostics (plus the packet memory scan) detect errors?

- If no errors were detected, you should call the Extreme Networks TAC. The next action will be determined by the frequency with which the error occurs and other problem details.
- If errors were detected, were the errors recoverable (mapped out of use)?
 — If they were, no further action is required.
 — If they were not mapped out of use, call the Extreme Networks TAC. The product must be replaced. TAC will initiate the RMA process.
Using Memory Scanning to Screen I/O Modules

NOTE

Memory scanning is available in ExtremeWare 6.2.2 and later releases, and applies only to “i” series Summit, Alpine, and BlackDiamond switches.

To check modules supported by the memory scanning feature, you can screen existing or new modules without having to upgrade or certify new ExtremeWare software on your networks. No particular configuration or traffic load is needed to execute memory scanning on the supported modules. Simply load ExtremeWare 6.2.2 or a later release onto a spare chassis with a default configuration and scan the modules as needed.

If your environment does not support a spare chassis or it would be impractical to rotate through the installed modules, then consider temporarily loading ExtremeWare 6.2.2 or a later release onto your existing systems during an extended maintenance window to perform memory scanning on modules in the field.

To do this, schedule an extended maintenance window and prepare the system for a temporary ExtremeWare upgrade. Do not convert or save the configuration on the switch. It is not possible to run an ExtremeWare 6.2.2 (or later) configuration correctly on an older version of ExtremeWare.

In temporarily upgrading your systems, plan to roll back the systems to the original working code image and configuration. This means you need the original ExtremeWare code version in hand and accessible by TFTP server from the switch. In addition you also need the latest saved configuration uploaded and also accessible to download back to the switch from a TFTP server.

No particular configuration is needed to support running memory scanning. You can use the existing default configuration to scan the supported modules and then restore the system to the original ExtremeWare version and configuration.

If you must support a large campus environment with several BlackDiamond or Alpine systems for this screening operation, you can temporarily dedicate a single MSM to the latest version of ExtremeWare for the exercise and manually move this around all the systems with a default configuration to scan the modules. For stackable platforms, you must load the latest ExtremeWare on every switch to run this test.

Be aware that any memory defect found and mapped out under this exercise does not remain mapped out when those modules are returned to a previous version of ExtremeWare. ExtremeWare does not have the capability to use the mapped out information located in the detected module’s EEPROM. The validity of this temporary screening exercise is limited to identifying modules with memory defects.
Limited Operation Mode and Minimal Operation Mode

This appendix describes two switch operational modes wherein switch behavior is restricted to protect the stability of the switch and network and to allow troubleshooting or corrective action. The two switch operational modes are limited operation mode and minimal operation mode. They result from different failure conditions, but respond to similar procedures for troubleshooting and correcting their respective failure conditions.

This appendix contains the following sections:

- Limited Operation Mode on page 111
- Minimal Operation Mode on page 112

Limited Operation Mode

A switch enters limited operation mode after a catastrophic reboot. As the switch boots, it checks to see whether a catastrophe caused this reboot. If that is the case, the switch enters limited operation mode.

In this context, a catastrophe is defined as:

- When diagnostics fail on an Alpine or Summit switch;
- When diagnostics fail when run on an MSM in a BlackDiamond that has only a single MSM;
- When a hardware device/component fails and triggers a system “panic” event;
- When the POST fails.

NOTE

Running diagnostics on an Alpine or Summit switch causes the switch to reboot twice: once to clear the state of the switch, again after the diagnostics have run, to make the switch available for use. The decision whether to enter limited operation mode is made before the second boot occurs.

In effect, limited mode “stunts” the bring-up process so that ports are not enabled, many system tasks are not spawned, and I/O modules are not powered up.

In limited operation mode, only the CPU, NVRAM, management port, console port, a limited set of system tasks, and a limited subset of CLI commands are active.
Triggering Limited Operation Mode

On a BlackDiamond system with a single MSM, if a diagnostics test detects errors or if the POST fails, the system goes into limited operation mode. Similarly, on a Summit or Alpine system, if a diagnostics test detects errors, the Summit or Alpine switch will go into limited operation mode. When a failure occurs, the system retains an error code.

In limited operation mode, you must use the `clear log diag-status` command to clear the hardware error code so that the module—in the case of a BlackDiamond system, or the switch—in the case of an Alpine or Summit system, can be brought up after the next reboot.

Bringing a Switch Out of Limited Operation Mode

To bring a switch out of limited operation mode, perform these steps:

1. Begin collecting background information that might help isolate the causes of the problem and contact Extreme Networks technical support and notify them about the problem.
 a. Note any recent hardware or configuration changes.
 b. Create a detailed description of all the known symptoms.
 c. Capture the output from the `show log` command.
 d. Capture the output from the `show diagnostics` command.
 e. On a sheet of paper, write down the state of all LEDs on the switch.

2. Use the `clear log diag-status` command to clear the hardware error codes.

3. Use the `reboot` command to reboot the system.

4. Use the `show tech` CLI command to collect system information.

5. Send all of the information about the problem to Extreme Networks technical support.

Minimal Operation Mode

If the system reboots due to a failure that persists after the reboot, the system will reboot again when it detects the failure again, and will continue that behavior across an endless cycle of reboots—referred to as a reboot loop.

The ExtremeWare reboot loop protection feature provides a mechanism to detect a reboot loop and force the system into minimal operation mode. In minimal mode, only the CPU, NVRAM, management port, a minimal set of system tasks, and a minimal subset of CLI commands are active.

Triggering Minimal Operation Mode

To protect against reboot loops, you can configure reboot loop protection using the command:

```
configure reboot-loop-protection threshold <time-interval> <count>
```

If the switch reboots the specified number of times (<count>) within the specified time interval (<time-interval>), the switch stops rebooting and comes up in minimal operation mode.

For more information on the use of this command, see “Configuring Reboot Loop Protection” on page 43.
To detect a reboot loop, a timestamp and a counter are saved. Each time the switch reboots because of a software crash or exception, the counter is incremented. A user-executed `reboot` command clears the timestamp and counter to prevent a false reboot loop protection. This action also allows the user to bring the switch out of minimal operation mode so that the system can come up normally after the failure has been identified and fixed.

Bringing a Switch Out of Minimal Operation Mode

To bring a switch out of minimal operation mode, perform these steps:

1. Begin collecting background information that might help isolate the causes of the problem and contact Extreme Networks technical support and notify them about the problem.
 a. Note any recent hardware or configuration changes.
 b. Create a detailed description of all the known symptoms.
 c. Capture the output from the `show log` command.
 d. Capture the output from the `show diagnostics` command.
 e. On a sheet of paper, write down the state of all LEDs on the switch.
2. Use the `clear log diag-status` command to clear the hardware error codes.
3. Use the `reboot` command to reboot the system.
4. Use the `show tech` CLI command to collect system information.
5. Send all of the information about the problem to Extreme Networks technical support.
Limited Operation Mode and Minimal Operation Mode
This appendix lists additional documentation and other information resources that support the use of the ExtremeWare advanced system diagnostics suite in testing and validating the operating integrity of Extreme Networks switches.

This appendix contains the following sections:

- General Information on page 115
- Other Documentation Resources on page 115

General Information

Please refer to the following documents for general information about parity errors and soft/hard failures in general.

- http://www.pcguide.com/ref/ram/err.htm

Other Documentation Resources

Extreme Networks customer documentation is available at the following Web site:

- http://www.extremenetworks.com/services/documentation/

The customer documentation support includes:

- *ExtremeWare Software User Guide*
- *ExtremeWare Command Reference Guide*

 Use the user guide and the command reference guide to verify whether the configuration is correct.
- *ExtremeWare Error Message Decoder*

 Use the error message decoder to determine whether there are any available explanations or actions for mitigating the problem.
• White papers and solutions documentation:
 — Advanced technologies
 — Applications in the networking world
• Additional troubleshooting tools:
 — ExtremeWare Release Notes
 Use the release notes to check for known issues, supported limits, bug fixes from higher
 ExtremeWare versions, etc.
 (Release notes are available to all customers who have a service contract with Extreme Networks
 via eSupport. The release notes are provided by product, under the Software Downloads area of
 eSupport.)
 — Virtual Information Center (VIC)
 Use this site to check for any available information about the problem.
 — Extreme Knowledge Base
 Use this site to search for any known issues, or to search for known solutions.
 www.extremenetworks.com → Services → eSupport-Login → Known Issues → Find
 www.extremenetworks.com → Services → eSupport-Login → Solutions → Find
 — ExtremeWare Field Notices
 Use the field notices to check for any known field alerts.
• Preventive Maintenance
 — Preventive maintenance practices
 Use the preventive maintenance area to check for any available special preventive programs.
 www.extremenetworks.com → Services → Documentation → Overview →
 Preventive Maintenance
 — Regularly scheduled visual inspections
Symbols

'e' series 13, 59, 101
(hitless" MSM failover 21, 39
'I' series 13
"inferno" series 13

A
active backplane (Alpine systems) 22
active tests 50
Alpine hardware architecture 22
Alpine systems
active backplane 22
I/O module architecture 22
SMMi processor module 22
ASICs 28
automatic system dump 45

B
backplane
active 22
passive 17
backplane health check (BlackDiamond only) 70
BlackDiamond
backplane 17
hardware architecture 16
I/O modules 18
MSM
MSM-3 21, 39
redundancy 20

cable diagnostics
'c' series switches 1001
'i' series switches 96
checksums
checksum error defined (table) 26
defined (table) 26
packet memory 28
severity level
CRIT 34
WARN 34
switch fabric 25
control bus. See slow path conventions
notice icons, About This Guide 9
diagnostic processing (figure) 28
CRC, Ethernet 25
CRIT 34
critical task exception 40, 41
Cyclical Redundancy Check. See CRC

data path. See also PBUS and fast path
DIAG 34
diagnostics
active tests 50
extended 57
FDB scan 25, 88
invasive 50
memory mapping 53
memory scanning 53
non-invasive 50
passive test 50
slot-based system hardware tests 13
switch fabric checksums 25
transceiver check 25
dump, system memory 45

EDP 34
errored cell correction 54
ergors
systematic, permanent 30
systematic, soft-state 30
transient 30
Ethernet CRC 25
EXT 34
Extreme Knowledge Base 116
Extreme Virtual Information Center (VIC) 116
ExtremeWare Error Message Decoder 115

fabric checksums
Index

tBGTask 40, 41
tConsole 41
tEdpTask 40, 41
tEsrpTask 40, 41
tExcTask 41
tExtTask 41
tLogTask 41
tNetTask 40, 41
tShell 41
tSwFault 41
tSyslogTask 41

systematic errors 30

tasks

root task 41
tBGTask 40, 41
tConsole 41
tEdpTask 40, 41
tEsrpTask 40, 41
tExcTask 41
tExtTask 41
tLogTask 41
tNetTask 40, 41
tShell 41
tSwFault 41
tSyslogTask 41
tBGTask 40, 41
tConsole 41
tEdpTask 40, 41
tEsrpTask 40, 41
tExcTask 41
tExtTask 41
tLogTask 41
tNetTask 40, 41
tShell 41
tSwFault 41
tSyslogTask 41
test packet type, system health check 34
tExcTask 41
tExtTask 41
tLogTask 41
tNetTask 40, 41
tShell 41
tSwFault 41
tSyslogTask 41

transceiver diagnostics

background check 25
configuration and use 82
transient errors 26, 30
troubleshooting cables 96

Ethernet UTP cable problems 96, 101
tShell 41
tSwFault 41
tSyslogTask 41

UTP cable problems 96, 101

verification checksum 26

WARN 34
white papers 116
Index of Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index of Commands

show fdb remap 91, 106
show log 72, 84, 91, 93, 105, 112, 113
show packet-mem-scan-recovery-mode 67
show port rxerrors 27
show ports cable diagnostics 101
show switch 43, 56, 84, 91, 105
show system-dump 46
show tech 105, 112, 113
show version 105
synchronize 43
synchronize command 21

U
unconfigure fdb-scan failure-action 89
unconfigure fdb-scan period 89
unconfigure packet-mem-scan-recovery-mode 67
unconfigure switch all 56
unconfigure system-dump 46
upload system-dump 46